ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

CONTROL DEL PROCESO ADMINISTRATIVO


Enviado por   •  19 de Septiembre de 2012  •  2.822 Palabras (12 Páginas)  •  813 Visitas

Página 1 de 12

Hibridación del carbono

La hibridación del carbono consiste en un reacomodo de electrones del mismo nivel de energía (orbital s) al orbital p del mismo nivel de energía. Esto es con el fin de que el orbital p tenga 1 electrón en "x", uno en "y" y uno en "z" para formar la tetra valencia del carbono. Se debe tomar en cuenta que los únicos orbitales con los cuales trabaja el Carbono son los orbitales "s" y "p".

Orbitales

Los electrones de un átomo tienen la tendencia de ubicarse en orbitales específicos alrededor del núcleo, lo cual se enuncia en la ecuación de Schrödinger. Los detalles sobre número y orientación de electrones en cada orbital depende de las propiedades energéticas descritas por los números cuánticos. El primer orbital, el más cercano al núcleo es el llamado 1s y solo puede ser ocupado por dos electrones. Un átomo con un solo electrón (hidrógeno) y uno con dos electrones (helio) ubican su(s) electrón(es) en este orbital.

Un átomo con tres (litio) y cuatro (berilio) electrones tendrá que ubicar el tercer y cuarto electrón en el siguiente orbital, llamado 2s, el cual también solo acepta dos electrones.

Hibridación sp³

Cuatro orbitales sp³.

El átomo de carbono tiene seis electrones: dos se ubican en el orbital 1s (1s²), dos en el 2s (2s²) y los restantes dos en el orbital 2p (2p²). Debido a su orientación en el plano tridimensional el orbital 2p tiene capacidad para ubicar 6 electrones: 2 en el eje de las x, dos en el eje de las y y dos electrones en el eje de las z. Los dos últimos electrones del carbono se ubicarían uno en el 2px, el otro en el 2py y el orbital 2pz permanece vacío (2px¹ 2py¹). El esquema de lo anterior es (cada flecha un electrón):

Para satisfacer su estado energético inestable, un átomo de valencia como el del carbono, con orbitales parcialmente llenos (2px y 2py necesitarían tener dos electrones) tiende a formar enlaces con otros átomos que tengan electrones disponibles. Para ello, no basta simplemente colocar un electrón en cada orbital necesitado. En la naturaleza, éste tipo de átomos redistribuyen sus electrones formando orbitales híbridos. En el caso del carbono, uno de los electrones del orbital 2s es extraido y se ubica en el orbital 2pz. Así, los cuatro últimos orbitales tienen un electrón cada uno:

El estímulo para excitar al electrón del 2s al 2pz es aportado por el primer electrón en formar enlace con un átomo con este tipo de valencia. Por ejemplo, el hidrógeno en el caso del metano. Esto a su vez incrementa la necesidad de llenado de los restantes orbitales. Estos nuevos orbitales híbridos dejan de ser llamados 2s y 2p y son ahora llamados sp3 (un poco de ambos orbitales):

De los cuatro orbitales así formados, uno (25%) es proveniente del orbital s (el 2s) del carbono y tres (75%) provenientes de los orbitales p (2p). Sin embargo todos se sobreponen al aportar la hibridación producto del enlace. Tridimensionalmente, la distancia entre un hidrógeno y el otro en el metano son equivalentes e iguales a un ángulo de 109°.

Hibridación sp²

Configuración de los orbitales sp².

Estos mismos átomos que forman hibridaciones sp2 pueden formar compuestos con enlaces dobles. Forman un ángulo de 120º y su molécula es de forma plana. A los enlaces simples se les conoce como enlaces sigma (σ) y los enlaces dobles están compuestos por un enlace sigma y un enlace pi (π). Las reglas de ubicación de los electrones en estos casos, como el alqueno etileno obligan a una hibridación distinta llamada sp2, en la cual un electrón del orbital 2s se mezcla solo con dos de los orbitales 2p: surge a partir o al unirse el orbital s con dos orbitales p, por lo consiguiente se producen tres nuevos orbitales sp2, cada orbital nuevo produce enlaces covalentes

Tridimensionalmente, la distancia entre un hidrógeno y otro en algún carbono del etileno son equivalentes e iguales a un ángulo de 120°.

Hibridación sp

Se define como la combinacion de un orbital S y un P, para formar 2 orbitales híbridos, con orientacion lineal. Este es el tipo de enlace híbrido, con un ángulo de 180º y que se encuentra existente en compuestos con triples enlaces como los alquinos (por ejemplo el acetileno):

se caracteriza por la presencia de 2 orbitales pi(π)

Representación de los compuestos orgánicos mediante sus diferentes estructuras y formulas

La fórmula química es una representación convencional de los elementos que forman una molécula o compuesto químico. Su creador, José de Caso, en 1873, dice que una fórmula química se compone de símbolos y subíndices; correspondiéndose los símbolos con los elementos que formen el compuesto químico a formular y los subíndices con la cantidad de átomos presentes de cada elemento en el compuesto. Así, por ejemplo, una molécula descrita por la fórmula H2SO4 posee dos átomos de hidrógeno, un átomo de azufre y 4 átomos de oxígeno.

Formulación orgánica

Existen una gran variedad de compuestos orgánicos que se componen fundamentalmente de cadenas carbonadas de átomos de carbono (C) que sirven de esqueleto donde se unen o enlazan átomos de hidrógeno (H), aunque también pueden contener átomos de oxígeno (O) y nitrógeno (N), y en menor medida, de fósforo (P), halógenos (F, Cl, Br ó I) y azufre (S).

Isómeros

Isómeros del C6H12.

Ya que el carbono puede enlazarse de diferentes maneras, una cadena puede tener diferentes configuraciones de enlace dando lugar a los llamados isómeros, moléculas con la misma fórmula química pero con distintas estructuras y propiedades.

Grupos funcionales

Los compuestos orgánicos también pueden contener otros elementos, también grupos de átomos, llamados grupos funcionales. Un ejemplo es el grupo hidroxilo, que forma los alcoholes: un átomo de oxígeno enlazado a uno de hidrógeno (-OH), al que le queda una valencia libre.

Compuestos orgánicos

Los compuestos estudiados pueden dividirse en :

• compuestos alifáticos

• compuestos aromáticos

• compuestos heterocíclicos

Identificación de la química orgánica

Química de carbono:

La Química Orgánica o Química del carbono es la rama de la química que estudia una clase numerosa de moléculas que contienen carbono formando enlaces covalentes carbono-carbono o carbono-hidrógeno, también conocidos como compuestos orgánicos. Friedrich Wöhler y Archibald Scott Couper son conocidos como los "padres" de la química orgánica.

Diferencia entre un compuesto orgánico y uno inorgánico

Entre las diferencias

...

Descargar como (para miembros actualizados) txt (18 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com