ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Gas real


Enviado por   •  1 de Diciembre de 2013  •  Tesis  •  4.729 Palabras (19 Páginas)  •  344 Visitas

Página 1 de 19

Gas real

Un gas real, en oposición a un gas ideal o perfecto, es un gas que exhibe propiedades que no pueden ser explicadas enteramente utilizando la ley de los gases ideales. Para entender el comportamiento de los gases reales, lo siguiente debe ser tomado en cuenta:

• efectos de compresibilidad;

• capacidad calorífica específica variable;

• fuerzas de Van der Waals;

• efectos termodinámicos del no-equilibrio;

• cuestiones con disociación molecular y reacciones elementales con composición variable.

Para la mayoría de aplicaciones, un análisis tan detallado es innecesario, y la aproximación de gas ideal puede ser utilizada con razonable precisión. Por otra parte, los modelos de gas real tienen que ser utilizados cerca del punto de condensación de los gases, cerca de puntos críticos, a muy altas presiones, y en otros casos menos usuales.

Modelos:

Modelo de Van der Waals

Artículo principal: Ecuación de Van der Waals

Los gases reales son ocasionalmente modelados tomando en cuenta su masa y volumen molares

donde P es la presión, T es la temperatura, R es laconstante de los gases ideales, y Vm es el volumen molar. "a" y "b" son parámetros que son determinados empíricamente para cada gas, pero en ocasiones son estimados a partir de su temperatura crítica (Tc) y su presión crítica (Pc) utilizando estas relaciones:

Modelo de Redlich–Kwong

La ecuación de Redlich–Kwong es otra ecuación de dos parámetros que es utilizada para modelar gases reales. Es casi siempre más precisa que la ecuación de Van der Waals, y en ocasiones más precisa que algunas ecuaciones de más de dos parámetros. La ecuación es

donde "a" y "b" son dos parámetros empíricos que no son los mismos parámetros que en la ecuación de Van der Waals. Estos parámetros pueden ser determinados:

Modelo de Berthelot y de Berthelot modificado

La ecuación de Berthelot (nombrada en honor de D. Berthelot1 es muy raramente usada,

pero la versión modificada es algo más precisa

Modelo de Dieterici

Este modelo (nombrado en honor de C. Dieterici2 ) cayó en desuso en años recientes

.

Modelo de Clausius

La ecuación de Clausius (nombrada en honor de Rudolf Clausius) es una ecuación muy simple de tres parámetros usada para modelar gases.

Donde

y donde Vc es el volumen crítico.

Modelo Virial[

La ecuación virial deriva a partir de un tratamiento perturbacional de la mecánica estadística.

o alternativamente

donde A, B, C, A′, B′, y C′ son constantes dependientes de la temperatura.

Modelo de Peng–Robinson

Esta ecuación de dos parámetros (nombrada en honor de D.-Y. Peng y D. B. Robinson)3 tiene la interesante propiedad de ser útil para modelar algunos líquidos además de gases reales.

Modelo de Wohl

La ecuación de Wohl (nombrada en honor de A. Wohl4 ) está formulada en términos de valores críticos, haciéndola útil cuando no están disponibles las constantes de gases reales.

Donde

.

Modelo de Beattie–Bridgma]

Esta ecuación está basada en cinco constantes determinadas experimentalmente.5 Está expresada como

Donde

Se sabe que esta ecuación es razonablemente precisa para densidades hasta alrededor de 0.8 ρcr, donde ρcr es la densidad de la sustancia en su punto crítico. Las constantes que aparecen en la ecuación superior están dadas en la siguiente tabla cuando P está en KPa, v está en , T está en K y R=8.314 6

Gas A0 a B0 b c

Aire 131.8441 0.01931 0.04611 -0.001101 4.34×104

Argon, Ar 130.7802 0.02328 0.03931 0.0 5.99×104

Dióxido de carbono, CO2 507.2836 0.07132 0.10476 0.07235 6.60×105

Helio, He 2.1886 0.05984 0.01400 0.0 40

Hidrógeno, H2 20.0117 -0.00506 0.02096 -0.04359 504

Nitrógeno, N2 136.2315 0.02617 0.05046 -0.00691 4.20×104

Oxígeno, O2 151.0857 0.02562 0.04624 0.004208 4.80×104

Modelo de Benedict–Webb–Rubin

La ecuación de Benedict–Webb–Rubin es otra ecuación de estado, referida a veces como ecuación BWR y otra como ecuación BWRS:

donde d es la densidad molar y "a", "b", "c", "A", "B", "C", "α", y "γ" son constantes empíricas.

Gas ideal

Un gas ideal es un gas teórico compuesto de un conjunto de partículas puntuales con desplazamiento aleatorio que no interactúan entre sí. El concepto de gas ideal es útil porque el mismo se comporta según la ley de los gases ideales, una ecuación de estadosimplificada, y que puede ser analizada mediante la mecánica estadística.

En condiciones normales tales como condiciones normales de presión y temperatura, la mayoría de los gases reales se comporta en forma cualitativa como un gas ideal. Muchos gases tales como el nitrógeno, oxígeno, hidrógeno, gases nobles, y algunos gases pesados tales como el dióxido de carbono pueden ser tratados como gases ideales dentro de una tolerancia razonable.1Generalmente, el apartamiento de las condiciones de gas ideal tiende a ser menor a mayores temperaturas y a menor densidad (o sea a menor presión),1 ya que el trabajo realizado por las fuerzas intermoleculares es menos importante comparado con energía cinéticade las partículas, y el tamaño de las moléculas es menos importante comparado con el espacio vacío entre ellas.

El modelo de gas ideal tiende a fallar a temperaturas menores o a presiones elevadas, cuando las fuerzas intermoleculares y el tamaño intermolecular es importante. También por lo general, el modelo de gas ideal no es apropiado para la mayoría de los gases pesados, tales como vapor de agua o muchos fluidos refrigerantes.1 A ciertas temperaturas bajas y a alta presión, los gases reales sufren unatransición de fase, tales como a un líquido o a un sólido. El modelo de un gas ideal, sin embargo, no describe o permite las transiciones de fase. Estos fenómenos deben ser modelados por ecuaciones de estado más complejas.

El modelo de gas ideal ha sido investigado tanto en el ámbito de la dinámica newtoniana (como por ejemplo en "teoría cinética") y enmecánica cuántica (como "partícula en una caja"). El modelo de gas ideal también ha sido utilizado para modelar el comportamiento de electrones

...

Descargar como (para miembros actualizados) txt (28 Kb)
Leer 18 páginas más »
Disponible sólo en Clubensayos.com