Estadistica
Enviado por garciamaik • 2 de Octubre de 2011 • 2.510 Palabras (11 Páginas) • 560 Visitas
Origen
El término alemán Statistik, que fue primeramente introducido por Gottfried Achenwall (1749), designaba originalmente el análisis de datos del Estado, es decir, la "ciencia del Estado" (también llamada aritmética política de su traducción directa del inglés). No fue hasta el siglo XIX cuando el término estadística adquirió el significado de recolectar y clasificar datos. Este concepto fue introducido por el militar británico Sir John Sinclair (1754-1835).
En su origen, por tanto, la Estadística estuvo asociada a los Estados, para ser utilizados por el gobierno y cuerpos administrativos (a menudo centralizados). La colección de datos acerca de estados y localidades continúa ampliamente a través de los servicios de estadística nacionales e internacionales. En particular, los censos suministran información regular acerca de la población.
Ya se utilizaban representaciones gráficas y otras medidas en pieles, rocas, palos de madera y paredes de cuevas para controlar el número de personas, animales o ciertas mercancías. Hacia el año 3000 a. C. los babilonios usaban ya pequeños envases moldeados de arcilla para recopilar datos sobre la producción agrícola y de los géneros vendidos o cambiados. Los egipcios analizaban los datos de la población y la renta del país mucho antes de construir las pirámides en el siglo XI a. C. Los libros bíblicos de Números y Crónicas incluyen en algunas partes trabajos de estadística. El primero contiene dos censos de la población de Israel y el segundo describe el bienestar material de las diversas tribus judías. En China existían registros numéricos similares con anterioridad al año 2000 a. C. Los antiguos griegos realizaban censos cuya información se utilizaba hacia el 594 a. C. para cobrar impuestos.
[editar] Orígenes en probabilidad
Los métodos estadístico-matemáticos emergieron desde la teoría de probabilidad, la cual data desde la correspondencia entre Pascal y Pierre de Fermat (1654). Christian Huygens (1657) da el primer tratamiento científico que se conoce a la materia. El Ars coniectandi (póstumo, 1713) de Jakob Bernoulli y la Doctrina de posibilidades (1718) de Abraham de Moivre estudiaron la materia como una rama de las matemáticas.1 En la era moderna, el trabajo de Kolmogórov ha sido un pilar en la formulación del modelo fundamental de la Teoría de Probabilidades, el cual es usado a través de la estadística.
La teoría de errores se puede remontar a la Ópera miscellánea (póstuma, 1722) de Roger Cotes y al trabajo preparado por Thomas Simpson en 1755 (impreso en 1756) el cual aplica por primera vez la teoría de la discusión de errores de observación. La reimpresión (1757) de este trabajo incluye el axioma de que errores positivos y negativos son igualmente probables y que hay unos ciertos límites asignables dentro de los cuales se encuentran todos los errores; se describen errores continuos y una curva de probabilidad.
Pierre-Simon Laplace (1774) hace el primer intento de deducir una regla para la combinación de observaciones desde los principios de la teoría de probabilidades. Laplace representó la Ley de probabilidades de errores mediante una curva y dedujo una fórmula para la media de tres observaciones. También, en 1871, obtiene la fórmula para la ley de facilidad del error (término introducido por Lagrange, 1744) pero con ecuaciones inmanejables. Daniel Bernoulli (1778) introduce el principio del máximo producto de las probabilidades de un sistema de errores concurrentes.
Fotografía de Ceres por el telescopio espacial Hubble. La posición fue estimada por Gauss mediante el método de mínimos cuadrados.
El método de mínimos cuadrados, el cual fue usado para minimizar los errores en mediciones, fue publicado independientemente por Adrien-Marie Legendre (1805), Robert Adrain (1808), y Carl Friedrich Gauss (1809). Gauss había usado el método en su famosa predicción de la localización del planeta enano Ceres en 1801. Pruebas adicionales fueron escritas por Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W.F. Donkin (1844, 1856), John Herschel (1850) y Morgan Crofton (1870). Otros contribuidores fueron Ellis (1844), Augustus De Morgan (1864), Glaisher (1872) y Giovanni Schiaparelli (1875). La fórmula de Peters para r, el probable error de una observación simple es bien conocido.
El siglo XIX incluye autores como Laplace, Silvestre Lacroix (1816), Littrow (1833), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion y Karl Pearson. Augustus De Morgan y George Boole mejoraron la presentación de la teoría. Adolphe Quetelet (1796-1874), fue otro importante fundador de la estadística y quien introdujo la noción del «hombre promedio» (l’homme moyen) como un medio de entender los fenómenos sociales complejos tales como tasas de criminalidad, tasas de matrimonio o tasas de suicidios.
[editar] Estado actual
Durante el siglo XX, la creación de instrumentos precisos para asuntos de salud pública (epidemiología, bioestadística, etc.) y propósitos económicos y sociales (tasa de desempleo, econometría, etc.) necesitó de avances sustanciales en las prácticas estadísticas.
Hoy el uso de la estadística se ha extendido más allá de sus orígenes como un servicio al Estado o al gobierno. Personas y organizaciones usan la estadística para entender datos y tomar decisiones en ciencias naturales y sociales, medicina, negocios y otras áreas. La estadística es entendida generalmente no como un sub-área de las matemáticas sino como una ciencia diferente «aliada». Muchas universidades tienen departamentos académicos de matemáticas y estadística separadamente. La estadística se enseña en departamentos tan diversos como psicología, educación y salud pública.
Regresión lineal - Gráficos de dispersión en estadística.
Al aplicar la estadística a un problema científico, industrial o social, se comienza con un proceso o población a ser estudiado. Esta puede ser la población de un país, de granos cristalizados en una roca o de bienes manufacturados por una fábrica en particular durante un periodo dado. También podría ser un proceso observado en varios instantes y los datos recogidos de esta manera constituyen una serie de tiempo.
Por razones prácticas, en lugar de compilar datos de una población entera, usualmente se estudia un subconjunto seleccionado de la población, llamado muestra. Datos acerca de la muestra son recogidos de manera observacional o experimental. Los datos son entonces analizados
...