Estadistica
Enviado por GIRLCute • 16 de Agosto de 2012 • 726 Palabras (3 Páginas) • 845 Visitas
NORMAL
Ejemplo 1.- El tiempo medio en realizar una misma tarea por parte de los empleados de una empresa se distribuye según una distribución normal, con media de 5 días y desviación típica 1 día. Calcular el porcentaje de empleados que realizan la tarea en un tiempo inferior a 7 días.
ß
t1 = -¥ y t2 = (7 -5)/1 = 2
En la tabla la probabilidad acumulada para el valor 2 (equivalente a un tiempo inferior a 7 días.). Esta probabilidad es 0,9772. Por lo tanto, el porcentaje de empleados que realizan la tarea en un tiempo inferior a 7 días es del 97,7%.
Ejemplo 2.- La vida media de una lámpara, según el fabricante, es de 68 meses, con una desviación típica de 5. Se supone que se distribuye según una distribución normal En un lote de 10.000 lámparas. a) ¿Cuántas lámparas superarán previsiblemente los 75 meses? b) ¿Cuántos lámparas se estropearán antes de 60 meses?
ß
a)
t = (75 -68)/5 = 1,4
P (X > 75) = (t > 1,4) = 1 - P (t ≤ 1,4) = 1 - 0,9192 = 0,0808
Luego, el 8,08% de ...
El término correlación se utiliza generalmente para indicar la correspondencia o la relación recíproca que se da entre dos o más cosas, ideas, personas, entre otras.
En tanto, en probabilidad y estadística, la correlación es aquello que indicará la fuerza y la dirección lineal que se establece entre dos variablesaleatorias.
Análisis de correlación
El análisis de correlación emplea métodos para medir la significación del grado o intensidad de asociación entre dos o más variables. Normalmente, el primer paso es mostrar los datos en un diagrama de dispersión. El concepto de correlación está estrechamente vinculado al concepto de regresión, pues, para que una ecuación de regresión sea razonable los puntos muéstrales deben estar ceñidos a la ecuación de regresión; además el coeficiente de correlación debe ser:
• Grande cuando el grado de asociación es alto (cerca de +1 o -1, y pequeño cuando
• Es bajo, cerca de cero.
• Independiente de las unidades en que se miden las variables.
Diagrama de dispersión
Un diagrama de dispersión se emplea cuando existe una variable que está bajo el control del experimentador. Si existe un parámetro que se incrementa o disminuye de forma sistemática por el experimentador, se le denomina parámetro de control o variable independiente = eje de x y habitualmente se representa a lo largo del eje horizontal. La variable medida o dependiente = eje de y usualmente se representa a lo largo del eje vertical. Si no existe una variable dependiente, cualquier variable se puede representar en cada eje y el diagrama de dispersión mostrará el grado de correlación (no causalidad)
...