ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ciclo Otto


Enviado por   •  17 de Febrero de 2013  •  2.270 Palabras (10 Páginas)  •  946 Visitas

Página 1 de 10

Ciclo de Otto

El ciclo Otto es el ciclo termodinámico que se aplica en los motores de combustión interna de encendido provocado (motores de gasolina). Se caracteriza porque en una primera aproximación teórica, todo el calor se aporta a volumen constante.

Invención del motor de combustión interna

El primer inventor, hacia 1862, fue el francés Alphonse Beau de Rochas. El segundo, hacia 1875, fue el alemán doctor Nikolaus August Otto. Como ninguno de ellos sabía de la patente del otro hasta que se fabricaron motores en ambos países, hubo un pleito. De Rochas ganó cierta suma de dinero, pero Otto se quedó con la fama: el principio termodinámico del motor de cuatro tiempos se llama aún ciclo de Otto.

Otto construyó su motor en 1866 junto con su compatriota Eugen Langen. Se trataba de un motor de gas que poco después dio origen al motor de combustión interna de cuatro tiempos. Otto desarrolló esta máquina, que después llevaría su nombre (motor cíclico Otto), en versiones de cuatro y dos tiempos.

Hay dos tipos de motores que se rigen por el ciclo de Otto, los motores de dos tiempos y los motores de cuatro tiempos. Este último, junto con el motor diesel, es el más utilizado en los automóviles ya que tiene un buen rendimiento y contamina mucho menos que el motor de dos tiempos.

Motor de cuatro tiempos

Descripción del ciclo

Admisión (1)

El pistón baja con la válvula de admisión abierta, aumentando la cantidad de mezcla (aire + combustible) en la cámara. Esto se modela como una expansión a presión constante (ya que al estar la válvula abierta la presión es igual a la exterior). En el diagrama PV aparece como la línea recta E→A.

Compresión (2)

El pistón sube comprimiendo la mezcla. Dada la velocidad del proceso se supone que la mezcla no tiene posibilidad de intercambiar calor con el ambiente, por lo que el proceso es adiabático. Se modela como la curva adiabática reversible A→B, aunque en realidad no lo es por la presencia de factores irreversibles como la fricción.

Combustión

Con el pistón en su punto más alto, salta la chispa de la bujía. El calor generado en la combustión calienta bruscamente el aire, que incrementa su temperatura a volumen prácticamente constante. Esto se representa por una isocora B→C. Este paso es claramente irreversible, pero para el caso de un proceso isócoro en un gas ideal el balance es el mismo que en uno reversible.

Expansión (3)

La alta temperatura del gas empuja al pistón hacia abajo, realizando trabajo sobre él. De nuevo, por ser un proceso muy rápido se aproxima por una curva adiabática reversible C→D.

Escape (4)

Se abre la válvula de escape y el gas sale al exterior, empujado por el pistón a una temperatura mayor que la inicial, siendo sustituido por la misma cantidad de mezcla fría en la siguiente admisión.

En total, el ciclo se compone de dos subidas y dos bajadas del pistón, razón por la que se le llama motor de cuatro tiempos.

Eficiencia

La eficiencia o rendimiento térmico de un motor de este tipo depende de la relación de compresión, proporción entre los volúmenes máximo y mínimo de la cámara de combustión. Esta proporción suele ser de 8 a 1 hasta 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de octanos para evitar la detonación. Una relación de compresión baja no requiere combustible con alto número de octanos para evitar este fenómeno; de la misma manera, una compresión alta requiere un combustible de alto número de octanos, para evitar los efectos de la detonación, es decir, que se produzca una auto ignición del combustible antes de producirse la chispa en la bujía. El rendimiento medio de un buen motor Otto de 4 tiempos es de un 25 a un 30%, inferior al rendimiento alcanzado con motores diesel, que llegan a rendimientos del 30 al 45%, debido precisamente a su mayor relación de compresión.

Eficiencia en función del calor

Al analizar el ciclo Otto ideal, podemos despreciar en el balance los procesos de admisión y de escape a presión constante A→E y E→A, ya que al ser idénticos y reversibles, en sentido opuesto, todo el calor y el trabajo que se intercambien en uno de ellos, se cancela con un término opuesto en el otro.

Intercambio de calor

De los cuatro procesos que forman el ciclo cerrado, no se intercambia calor en los procesos adiabáticos A→B y C→D, por definición. Sí se intercambia en los dos procesos isócoros.

En la ignición de la mezcla B→C, una cierta cantidad de calor Qc (procedente de la energía interna del combustible) se transfiere al aire. Dado que el proceso sucede a volumen constante, el calor coincide con el aumento de la energía interna

El subíndice "c" viene de que este calor se intercambia con un supuesto foco caliente.

En la expulsión de los gases D→A el aire sale a una temperatura mayor que a la entrada, liberando posteriormente un calor | Qf | al ambiente. En el modelo de sistema cerrado, en el que nos imaginamos que es el mismo aire el que se comprime una y otra vez en el motor, modelamos esto como que el calor | Qf | es liberado en el proceso D→A, por enfriamiento. El valor absoluto viene de que, siendo un calor que sale del sistema al ambiente, su signo es negativo. Su valor, análogamente al caso anterior, es

El subíndice "f" viene de que este calor se cede a un foco frío, que es el ambiente.

Trabajo realizado

De forma opuesta a lo que ocurre con el calor, no se realiza trabajo sobre el sistema en los dos procesos isócoros. Sí se realiza en los dos adiabáticos.

En la compresión de la mezcla A→B, se realiza un trabajo positivo sobre el gas. Al ser un proceso adiabático, todo este trabajo se invierte en incrementar la energía interna, elevando su temperatura:

En la expansión C→D es el aire el que realiza trabajo sobre el pistón. De nuevo este trabajo útil equivale a la variación de la energía interna

El trabajo útil realizado por el motor será el trabajo neto entregado, igual a lo que produce (en valor absoluto) menos lo que emplea en funcionar

Rendimiento

El rendimiento de una máquina térmica se define, como “lo que sacamos dividido por lo que nos cuesta”. En este caso, lo que sacamos es el trabajo neto útil, | W |. Lo que nos cuesta es el calor Qc, que introducimos en la combustión. Por tanto

Sustituyendo el trabajo como diferencia de calores

Esta es la expresión general

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com