ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

FISIOLOGIA SISTEMA NERVIOSO


Enviado por   •  8 de Marzo de 2015  •  5.467 Palabras (22 Páginas)  •  426 Visitas

Página 1 de 22

GENERALIDADES

El sistema nervioso proporciona, junto al sistema endocrino, la mayor parte de funciones de regulación del cuerpo. En general, el sistema nervioso regula las actividades rápidas del cuerpo, como la contracción muscular, cambios súbitos en la actividad visceral e índices de secreción de algunas glándulas endocrinas. Asimismo, lleva a cabo tareas complejas como el habla, la memoria, el recordar, etc. Estas actividades diversas pueden agruparse en tres funciones básicas:

1. Funciones sensoriales: Gran parte de las actividades del sistema nervioso se inician por la experiencia sensorial que llega de los receptores sensoriales, como receptores visuales, auditivos, táctiles u otros. Esta experiencia sensorial ocasiona una reacción inmediata o bien la memoria la almacena en el cerebro durante minutos, horas o años; estas experiencias determinan las reacciones corporales que se ejecutan tiempo después. Las neuronas que transmiten la información sensorial al encéfalo o a la médula espinal se denominan neuronas sensoriales o aferentes.

2. Funciones integradoras: Las funciones integradoras consisten en la capacidad del SNC de procesar la información sensorial, analizándola y almacenando parte de ella, lo cual va seguido de la toma de decisiones para que tenga lugar una respuesta apropiada. Muchas de las neuronas que participan en las funciones integradoras son interneuronas, cuyos axones contactan neuronas cercanas entre sí en el encéfalo, médula espinal o ganglios. Las interneuronas representan la inmensa mayoría de las neuronas de nuestro organismo.

3. Funciones motoras: Las funciones motoras consisten en responder a las decisiones de la función integradora para regular diversas actividades corporales. Esto se realiza por regulación de:

a) Contracción de los músculos esqueléticos de todo el cuerpo.

b) Contracción de músculo liso en órganos internos.

c) Secreción de glándulas exocrinas y endocrinas en algunas partes del cuerpo. Estas actividades se denominan colectivamente funciones motoras del sistema nervioso, y los músculos y glándulas se llaman efectores.

Las neuronas encargadas de esta función son neuronas motoras o eferentes, que transmiten información del encéfalo y médula espinal a las diversas estructuras corporales.

ORGANIZACIÓN FUNCIONAL

Desde un punto de vista funcional el sistema nervioso se divide en sistema nervioso somático, sistema nervioso autónomo y sistema nervioso entérico.

El sistema nervioso somático (SNS) consta de:

1. Neuronas sensitivas, la cuales transportan hacia el SNC información de receptores somáticos situados en la superficie corporal y algunas estructuras profundas, y de receptores de los órganos de los sentidos (vista, oído, gusto y olfato).

2. Neuronas motoras, las cuales conducen impulsos desde el SNC hasta los músculos esqueléticos. El control de las respuestas motoras del SNS es voluntario.

El sistema nervioso autónomo (SNA) consta de:

1. Neuronas sensitivas, la cuales transportan hacia el SNC información de receptores autonómicos situados en las vísceras (p.e. estómago, pulmones, etc.).

2. Neuronas motoras, las cuales conducen impulsos desde el SNC hasta el músculo liso, el músculo cardíaco y las glándulas. El control de las respuestas motoras del SNA es involuntario. La parte motora del SNA consta de dos divisiones: la división simpática y la división parasimpática.

El sistema nervioso entérico (SNE) representa el “cerebro” del tubo digestivo. Sus neuronas se extienden a lo largo del tracto gastrointestinal (GI). Las neuronas sensitivas monitorizan los cambios químicos que se producen en el interior del tracto GI y el grado de estiramiento de su pared. Las neuronas motoras controlan la contracción del músculo liso del tracto GI y las secreciones de sus órganos.

FISIOLOGÍA DE LAS NEURONAS

Las neuronas se comunican entre sí a través de potenciales de acción o impulsos nerviosos. La producción de potenciales de acción depende de dos características básicas de la membrana plasmática: el potencial de membrana en reposo y canales iónicos específicos.

Cómo en muchas otras células del cuerpo, la membrana plasmática de las neuronas posee un potencial de membrana, es decir, una diferencia de potencial entre el interior y el exterior de la membrana. El potencial de membrana es como la carga almacenada en un acumulador. Cuando la neurona está en reposo este potencial se denomina potencial de membrana en reposo.

El potencial de acción o impulso nervioso es una secuencia rápida de fenómenos que invierten el potencial de membrana, para luego restaurarlo a su estado de reposo. Se produce tras la llegada a la célula de un estímulo y, gracias a la excitabilidad de las neuronas, éste se transforma en potencial de acción. Durante un potencial de acción, se abren y después se cierran dos tipos de canales iónicos:

1. Primero se abren canales que permiten la entrada de Na+ a la célula, lo cual provoca su despolarización.

2. Después se abren canales de K+, con lo que ocurre la salida de estos iones y se genera la repolarización.

Los potenciales de acción siguen el principio o ley del todo o nada: si la despolarización alcanza el valor umbral (-55mV), se abren los canales de Na+ y se produce un potencial de acción que siempre tiene la misma amplitud.

El potencial de acción se genera en muchas ocasiones al inicio del axón y se propaga a través del axón hasta las terminales sinápticas. De esta forma las neuronas pueden comunicarse entre sí o con los órganos efectores. La conducción a través de las fibras mielínicas se produce a través de los nódulos de Ranvier.

Cuando un impulso nervioso se propaga en un axón mielínico, la despolarización de la membrana plasmática en un nódulo de Ranvier ocasiona un flujo de iones (Na+ y K+) en el citosol y líquido extracelular que abren los canales de Na+ del siguiente nódulo,

desencadenando un nuevo potencial de acción, y así sucesivamente. Puesto que la corriente fluye por la membrana sólo en los nódulos, el impulso parece saltar de nódulo a nódulo. Este tipo de transmisión de impulsos se denomina conducción saltatoria y condiciona un aumento en la velocidad de propagación de los impulsos nerviosos. En los axones amielínicos la conducción es continua. La conducción nerviosa en los axones mielínicos puede ser 100 veces más rápida

...

Descargar como (para miembros actualizados) txt (34 Kb)
Leer 21 páginas más »
Disponible sólo en Clubensayos.com