ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ACELERACIÓN


Enviado por   •  11 de Junio de 2014  •  Ensayos  •  1.990 Palabras (8 Páginas)  •  178 Visitas

Página 1 de 8

UNIVERSIDAD DE ORIENTE

NUCLEO DE ANZOATEGUI

TEC. FRABRICACION MECANICA

DEPARTAMENTO DE TEC FABRICACION MECANICA

REALIZADO POR:

LUIS DAVID GARCEZ ORTEGA

C.I. 25343121

BARCELONA, JUNIO 2014

ACELERACIÓN

El concepto aceleración, no tiene que ver con ir moviéndose rápido. Es un concepto que en muchas ocasiones ha sido mal utilizado en la vida real, sin embargo, su significado en física es muy diferente. Es muy común escuchar que se utiliza este concepto para indicar que un objeto se mueve a gran velocidad lo cual es incorrecto. El concepto aceleración se refiere al cambio en la velocidad de un objeto. Siempre que un objeto cambia su velocidad, en términos de su magnitud o dirección, decimos que está acelerando.

De la ecuación surge la posibilidad de que la aceleración sea positiva o negativa. La aceleración resulta ser positiva si el objeto aumentara su velocidad. Cuando el objeto aumenta la velocidad, entonces la velocidad final sería mayor que la inicial por lo que al restarlas para determinar la diferencia, la misma sería positiva. Por el contrario, si el objeto disminuye la velocidad, entonces la aceleración sería negativa. La velocidad final sería menor que la inicial y por tanto la diferencia entre ambas sería negativa. En ambos casos, si la velocidad aumenta o disminuye, decimos que el objeto está acelerado. Sin embargo es muy común utilizar la palabra desaceleración para referirnos a la aceleración negativa.

ACELERACION TANGENCIAL

Se denomina aceleración tangencial, es un vector tangente a la trayectoria cuya magnitud es la rapidez con la que cambia el módulo de la velocidad. Refleja el cambio en la celeridad de la partícula.

ACELERACIÓN NORMAL O CENTRÍPETA

Se denomina aceleración normal o centrípeta, refleja el cambio en la dirección del movimiento y es un vector perpendicular al vector tangente apuntando a la parte interior, lado cóncavo, de la curvatura.

ANALISIS DE ACELERACIONES

Para el análisis de aceleraciones en mecanismos usaremos las expresiones obtenidas en los apartados 4 y 5, es decir:

a p= a o+ x r + x ( x r)

en el caso de sólido indeformable y:

a p= ao+ ar+ αr + ω (ω r )+2 x Vr = a rel +a arr+ acor

en el caso de movimiento relativo.

Comenzaremos por el caso de mecanismos formados por sólidos indeformables articulados, sin movimiento relativo.

MECANISMOS SIN MOVIMIENTO RELATIVO

Analizaremos el caso más simple de una manivela con a constantes.

a A= ao1+ a An + a At

ao =ao1=0

Puesto que el punto O no puede moverse, tendrá velocidad y aceleración nulas.

Aceleración normal de A, tendrá:

Dirección de a A,r será O A, y sentido hacia O1 Módulo: | a |= O1 Aw^2

a x r = aAt Aceleración tangencial de A, tendrá:

Dirección ^ a O1A y sentido congruente con a .

Módulo: | a At | = O1 A r a .

La aceleración a A final será la composición vectorial de ambas.

Polo de aceleraciones

Es el punto de un sólido que tiene aceleración nula. En general el polo de aceleraciones O1 de un sólido no tiene porqué coincidir con el centro instantáneo de rotación I, por lo tanto:

- El centro instantáneo I no tiene, en general, aceleración nula.

- El polo de aceleraciones Q no tiene, en general, velocidad nula.

En el primer ejemplo analizado, la manivela en rotación, ambos coinciden, pero en general no tiene porqué ser así.

Análisis de aceleraciones en el cuadrilátero articulado

La figura siguiente muestra un cuadrilátero articulado, donde conocemos w1 y a1 en el elemento móvil 1.

Supondremos que ya hemos realizado el análisis de velocidades y conocemos vA , vB.

Deseamos obtener las aceleraciones en los puntos A y B así como las aceleraciones angulares a2 y a3

utilizando

a B= a A+ aBAn + aBAt

donde:

* a A acabamos de calcularla

* a BAn tiene dirección A B y sentido hacia A.

* | a |= 2 AB BAn AB w .

Puesto que no conocemos a2, no podemos calcular el módulo | aBAt |= 2 AB ar , por el momento sólo conocemos su dirección.

Por otro lado, la aceleración a B

r también la podemos referir al centro de giro O2

a B= a O 2 + a B n + a B t= a B n + a B t

donde |a | es desconocido porque no se tiene el valor de a 3.

Componemos estas dos ecuaciones vectoriales:

a

...

Descargar como (para miembros actualizados)  txt (11.5 Kb)  
Leer 7 páginas más »
Disponible sólo en Clubensayos.com