ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ALGORITMOS GENETICOS

net1117 de Noviembre de 2014

679 Palabras (3 Páginas)213 Visitas

Página 1 de 3

Introducción:

El algoritmo genético es una técnica de búsqueda basada en la teoría de la evolución de Darwin, que ha cobrado tremenda popularidad en todo el mundo durante los últimos años.

Este concepto fue desarrollad a fines de los 60s en la Universidad de Michigan por el investigador John Holland el cual era consciente de la importancia de la selección natural, y desarrolló finalmente una técnica la cual pudo ser incorporada a un programa. Su objetivo era lograr que las computadoras aprendieran por sí mismas. Esta técnica tomo originalmente el nombre de "planes reproductivos", pero luego se hizo popular bajo el nombre "algoritmo genético" tras la publicación de su libro en 1975.

Definición:

Una definición bastante completa de un algoritmo genético es la propuesta por John Koza el denominado padre de la programación genética, es la siguiente:

"Es un algoritmo matemático altamente paralelo que transforma un conjunto de objetos matemáticos individuales con respecto al tiempo usando operaciones modeladas de acuerdo al principio Darwiniano de reproducción y supervivencia del más apto, y tras haberse presentado de forma natural una serie de operaciones genéticas de entre las que destaca la recombinación sexual. Cada uno de estos objetos matemáticos suele ser una cadena de caracteres (letras o números) de longitud fija que se ajusta al modelo de las cadenas de cromosomas, y se les asocia con una cierta función matemática que refleja su aptitud. "

Desarrollo:

Los Algoritmos Genéticos, son métodos adaptativos que pueden usarse para resolver problemas de búsqueda y optimización. Están basados en el proceso genético de los organismos vivos. A lo largo de las generaciones, las poblaciones evolucionan en la naturaleza de acorde con los principios de la selección natural y la supervivencia de los más fuertes, postulados por Darwin. Por imitación de este proceso, los Algoritmos Genéticos son capaces de ir creando soluciones para problemas del mundo real. La evolución de dichas soluciones hacia valores óptimos del problema depende en buena medida de una adecuada codificación de las mismas.

Un algoritmo genético consiste en una función matemática o una rutina de software que toma como entradas a los ejemplares y retorna como salidas cuáles de ellos deben generar descendencia para la nueva generación.

Versiones más complejas de algoritmos genéticos generan un ciclo iterativo que directamente toma a la especie (el total de los ejemplares) y crea una nueva generación que reemplaza a la antigua una cantidad de veces determinada por su propio diseño. Una de sus características principales es la de ir perfeccionando su propia heurística en el proceso de ejecución, por lo que no requiere largos períodos de entrenamiento especializado por parte del ser humano, principal defecto de otros métodos para solucionar problemas, como los Sistemas Expertos.

Los Algoritmos Genéticos usan una analogía directa con el comportamiento natural. Trabajan con una población de individuos, cada uno de los cuales representa una solución factible a un problema dado. A cada individuo se le asigna un valor ó puntuación, relacionado con la bondad de dicha solución. En la naturaleza esto equivaldría al grado de efectividad de un organismo para competir por unos determinados recursos. Cuanto mayor sea la adaptación de un individuo al problema, mayor será la probabilidad de que el mismo sea seleccionado para reproducirse, cruzando su material genético con otro individuo seleccionado de igual forma. Este cruce producirá nuevos individuos. Descendientes de los anteriores. Los cuales comparten algunas de las características de sus padres. Cuanto menor sea la adaptación de un individuo, menor será la probabilidad de que dicho

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com