Detreminantes
Danjmnz4 de Junio de 2013
916 Palabras (4 Páginas)302 Visitas
Determinante
En Matemáticas se define el determinante como una forma multilineal alternada de un cuerpo. Esta definición indica una serie de propiedades matemáticas y generaliza el concepto de determinante haciéndolo aplicable en numerosos campos. Sin embargo, el concepto de determinante o de volumen orientado fue introducido para estudiar el número de soluciones de los sistemas de ecuaciones lineales.
A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por |A| o por det (A).
|A| =
La regla de Cramer
La regla de Cramer es un teorema en álgebra lineal, que da la solución de un sistema lineal de ecuaciones en términos de determinantes. Recibe este nombre en honor a Gabriel Cramer (1704 - 1752), quien publicó la regla en su Introduction à l'analyse des lignes courbes algébriques de 1750, aunque Colin Maclaurin también publicó el método en su Treatise of Geometry de 1748 (y probablemente sabía del método desde 1729).1
La regla de Cramer es de importancia teórica porque da una expresión explícita para la solución del sistema. Sin embargo, para sistemas de ecuaciones lineales de más de tres ecuaciones su aplicación para la resolución del mismo resulta excesivamente costosa: computacionalmente, es ineficiente para grandes matrices y por ello no es usado en aplicaciones prácticas que pueden implicar muchas ecuaciones. Sin embargo, como no es necesario pivotar matrices, es más eficiente que la eliminación gaussiana para matrices pequeñas, particularmente cuando son usadas operaciones SIMD.
Si es un sistema de ecuaciones. es la matriz de coeficientes del sistema, es el vector columna de las incógnitas y es el vector columna de los términos independientes. Entonces la solución al sistema se presenta así:
donde es la matriz resultante de reemplazar la j-ésima columna de por el vector columna . Hágase notar que para que el sistema sea compatible determinado, el determinante de la matriz ha de ser no nulo.
Teorema de Laplace
El teorema de Laplace (también conocido como regla de Laplace o desarrollo de Laplace), así llamado en honor del matemático francés homónimo es un teorema matemático que permite simplificar el cálculo de determinantes en matrices de elevadas dimensiones a base de descomponerlo en la suma de determinantes menores.
El teorema afirma que el determinante de una matriz es igual a la suma de los determinantes de los adjuntos de cualquier fila o columna de la matriz, lo que reduce un determinante de dimensión n a n determinantes de dimensión n-1. Aplicado de forma sucesiva, permite llegar a matrices 3x3 (con lo que se puede aplicar la regla de Sarrus) o 2x2 (en el que el determinante es el producto de la diagonal principal menos el de la secundaria).
Se puede optimizar los cálculos aplicando la regla de Chio y haciendo ceros lo que reduce el número de determinantes de rango inferior a calcular.
Propiedades de los determinantes
Las propiedades mas importantes de los determinantes son:
1. El determinante de una matriz cuadrada es igual al determinante de su matriz traspuesta.
2. Si los elementos de una línea o columna de una matriz se multiplican por un número, el determinante de la matriz queda multiplicado por dicho numero:
3. Si todas las lineas de una matriz de orden están multiplicadas por un mismo número el determinante de la matriz queda multiplicado por
4.
5. El determinante del producto de dos matrices cuadradas es igual al producto de
...