ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Gluconeogénsis


Enviado por   •  1 de Diciembre de 2013  •  1.932 Palabras (8 Páginas)  •  372 Visitas

Página 1 de 8

Gluconeogénesis

Nombres en azul indican los sustratos de la vía, flechas en rojo las reacciones únicas de esta vía, flechas cortadas indican reacciones de la glucolisis, que van en contra de esta vía, flechas en negrita indican la dirección de la vía.

La gluconeogénesis es una ruta metabólica anabólica que permite la síntesis de glucosa a partir de precursores no glucídicos. Incluye la utilización de varios aminoácidos, lactato, piruvato, glicerol y cualquiera de los intermediarios del ciclo de los ácidos tricarboxílicos (o ciclo de Krebs) como fuentes de carbono para la vía metabólica. Todos los aminoácidos, excepto la leucina y la lisina, pueden suministrar carbono para la síntesis de glucosa. Los Ácidos grasos de cadena par no proporcionan carbonos para la síntesis de glucosa, pues el resultado de su β-oxidación (Acetil-CoA) no es un sustrato gluconeogénico; mientras que los ácidos grasos de cadena impar proporcionarán un esqueleto de Carbonos que derivarán en Acetil-CoA y Succinil-CoA (que sí es un sustrato gluconeogénico por ser un intermediario del ciclo de Krebs).

Algunos tejidos, como el cerebro, los eritrocitos, el riñón, la córnea del ojo y el músculo, cuando el individuo realiza actividad extenuante, requieren de un aporte continuo de glucosa, obteniéndola a partir del glucógeno proveniente del hígado, el cual solo puede satisfacer estas necesidades durante 10 a 18 horas como máximo, lo que tarda en agotarse el glucógeno almacenado en el hígado. Posteriormente comienza la formación de glucosa a partir de sustratos diferentes al glucógeno.

La gluconeogénesis tiene lugar casi exclusivamente en el hígado (10% en los riñones). Es un proceso clave pues permite a los organismos superiores obtener glucosa en estados metabólicos como el ayuno.

Contenido

• 1. Reacciones de la gluconeogénesis

o 1.1 Conversión del piruvato en fosfoenolpiruvato

o 1.2 Conversión de la fructosa-1,6-bisfosfato en fructosa-6-fosfato

o 1.3 Conversión de la glucosa-6-fosfato en glucosa

• 2. Regulación

o 2.1 Regulación por los niveles de energía

o 2.2 Regulación por fructosa 2,6-bisfosfato

o 2.3 Regulación de la fosforilación

o 2.4 Regulación alostérica

• 3. Balance energético

• 4. Importancia biomédica

• 5. Referencias

Reacciones de la gluconeogénesis

Las enzimas que participan en la vía glucolítica participan también en la gluconeogénesis; ambas rutas se diferencian por tres reacciones irreversibles que utilizan enzimas específicas de este proceso y que condicionan los dos rodeos metabólicos de esta vía.

Estas reacciones son:

1. De glucosa a glucosa-6P.

2. De fructosa-6P a fructosa-1,6-bisfosfato.

3. De fosfoenolpiruvato a piruvato.

- Conversión del piruvato en fosfoenolpiruvato

El oxaloacetato es intermediario en la producción del fosfoenolpiruvato en la gluconeogénesis. La conversión de piruvato a fosfoenolpiruvato en la gluconeogénesis se lleva a cabo en dos pasos. El primero de ellos es la reacción de piruvato y dióxido de carbono para dar oxaloacetato. Este paso requiere energía, la cual queda disponible por hidrólisis de ATP.

La enzima que cataliza esta reacción es la piruvato carboxilasa, una enzima alostérica que se encuentra en la mitocondria. El acetil-CoA es un efector alostérico que activa la piruvato carboxilasa. Cuando hay más acetil-CoA del necesario para mantener el ciclo del ácido cítrico, el piruvato se dirige a la gluconeogénesis. El ion magnesio y la biotina son necesarios para una catálisis eficaz.

La biotina, enlazada covalentemente con la enzima, reacciona con el CO2, que se une de manera covalente. Después el CO2 se incorpora al piruvato, formando así oxaloacetato.

La conversión de oxaloacetato a fosfoenolpiruvato la cataliza la enzima fosfoenolpiruvato carboxiquinasa, que se encuentra en la mitocondria y en el citosol. Esta reacción también incluye la hidrólisis de un nucleósido-trifosfato, en este caso el GTP en vez del ATP.

Conversión de la fructosa-1,6-bisfosfato en fructosa-6-fosfato

La reacción de la fosfofructoquinasa 1 de la glucólisis es esencialmente irreversible pero sólo debido a que está impulsada por la transferencia de fosfato del ATP. La reacción que tiene lugar en la gluconeogénesis para evitar este paso consiste en una simple reacción hidrolítica, catalizada por la fructosa-1,6-bisfosfatasa.

La enzima con múltiples subunidades requiere la presencia de Mg2+ para su actividad y constituye uno de los principales lugares de control que regulan la ruta global de la gluconeogénesis. La fructosa-6-fosfato formada en esta reacción experimenta posteriormente la isomerización a glucosa-6-fosfato por la acción de la fosfoglucoisomerasa.

Conversión de la glucosa-6-fosfato en glucosa

La glucosa-6-fosfato no puede convertirse en glucosa por la acción inversa de la hexoquinasa o la glucoquinasa; la trasferencia de fosfato desde el ATP hace a la reacción virtualmente irreversible. Otra enzima específica de la gluconeogénesis, la glucosa-6-fosfatasa, que también requiere Mg2+, es la que entra en acción en su lugar. Esta reacción de derivación se produce también mediante una simple hidrólisis.

La glucosa-6-fosfatasa se encuentra fundamentalmente en el retículo endoplásmico del hígado con su lugar activo sobre el lado citosólico. La importancia de su localización en el hígado es que una función característica del hígado es sintetizar glucosa para exportarla a los tejidos a través de la circulación sanguínea.

Regulación

La regulación de la gluconeogénesis es crucial para muchas funciones fisiológicas, pero sobre todo para el funcionamiento adecuado del tejido nervioso. El flujo a través de la ruta debe aumentar o disminuir, en función del lactato producido por los músculos, de la glucosa procedente de la alimentación, o de otros precursores gluconeogénicos.

La gluconeogénesis está controlada en gran parte por la alimentación. Los animales que ingieren abundantes hidratos de carbono presentan tasas bajas de gluconeogénesis, mientras que los animales en ayunas o los que ingieren pocos hidratos de carbono presentan un flujo elevado a través de esta ruta.

Dado que la gluconeogénesis sintetiza glucosa y la glucólisis la cataboliza, es evidente que la gluconeogénesis y la glucólisis deben controlarse de manera recíproca. En otras palabras, las condiciones intracelulares que activan una ruta tienden a inhibir la otra.

Regulación por los niveles de energía

La fructuosa 1,6-bisfosfatasa es inhibida por concentraciones altas de AMP, asociadas con un

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com