ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Hidraulica


Enviado por   •  15 de Marzo de 2012  •  1.279 Palabras (6 Páginas)  •  523 Visitas

Página 1 de 6

Hidráulica.

Conceptualmente la hidráulica se puede definir de varias maneras, siempre dependiendo del contexto en que la usemos. Si la empleamos dentro del contexto de la mecánica de los fluidos, podemos decir que la hidráulica es la parte de la física que estudia el comportamiento de los fluidos. La palabra hidráulica proviene del griego, Hydor, y trata de las leyes que están en relación con el agua.

Cuando tratamos de un fluido como el aceite deberíamos hablar de oleo hidráulica, pero no es así, normalmente empleamos el vocablo hidráulica para definir a una tecnología de ámbito industrial que emplea el aceite como fluido y energía, y que está en estrecha relación, con las leyes de la mecánica de los fluidos.

Por si fuera poca la confusión, además, tenemos dos vocablos más, hidrostática e hidrodinámica. La hidrostática trata sobre las leyes que rigen a los fluidos en su estado de reposo. La hidrodinámica trata sobre las leyes que rigen sobre los fluidos en movimiento. Los dos vocablos se engloban dentro de la materia de la mecánica de los fluidos. Estos dos vocablos también se utilizan en neumática para explicar el comportamiento del aire comprimido.

Características de la hidráulica.

Como todo, la hidráulica tiene sus ventajas y sus inconvenientes, su lado positivo y su lado negativo. Respecto a lo positivo podemos decir que la hidráulica al utilizar aceites es auto lubricante, el posicionamiento de sus elementos mecánicos es ajustado y preciso, a causa de la incomprensibilidad del aceite el movimiento es bastante uniforme, transmite la presión más rápido que el aire comprimido, puede producir más presión que el aire comprimido. Éstas serían las características positivas más relevantes.

Entre las negativas tenemos que destacar su suciedad, es inflamable y explosiva, es sensible a la contaminación y a las temperaturas, sus elementos mecánicos son costosos, el aceite envejece o sufre desgaste, tiene problemas de cavitación o entrada de aire, puede sufrir bloqueo.

Contenido

Apunte de hidrodinámica: Flujos incompresibles y sin rozamiento. Ecuación de Bernoulli. Flujos viscosos. Movimiento laminar y turbulento. Flujos de la capa límite. Flujos compresibles. Viscosidad

DINAMICA DE FLUIDOS O HIDRODINAMICA

Esta rama de la mecánica de fluidos se ocupa de las leyes de los fluidos en movimiento; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene una importancia práctica mayor que la hidrostática,sólo podemos tratar aquí algunos conceptos básicos.

Euler fue el primero en reconocer que las leyes dinámicas para los fluidos sólo pueden expresarse de forma relativamente sencilla si se supone que el fluido es incompresible e ideal, es decir, si se pueden despreciar los efectos del rozamiento y la viscosidad. Sin embargo, como esto nunca es así en el caso de los fluidos reales en movimiento, los resultados de dicho análisis sólo pueden servir como estimación para flujos en los que los efectos de la viscosidad son pequeños.

a) Flujos incompresibles y sin rozamiento

Estos flujos cumplen el llamado teorema de Bernoulli, que afirma que la energía mecánica total de un flujo incompresible y no viscoso (sin rozamiento) es constante a lo largo de una línea de corriente. Las líneas de corriente son líneas de flujo imaginarias que siempre son paralelas a la dirección del flujo en cada punto, y en el caso de flujo uniforme coinciden con la trayectoria de las partículas individuales de fluido. El teorema de Bernoulli implica una relación entre los efectos de la presión, la velocidad y la gravedad, e indica que la velocidad aumenta cuando la presión disminuye. Este principio es importante para predecir la fuerza de sustentación de un ala en vuelo.

Ecuación de continuidad: (para flujo estacionario e incompresible, sin fuentes ni sumideros, por evaluarse a lo largo de una línea de corriente).

1) Ley de conservación de la masa en la dinámica de los fluidos:

A1.v1 = A2.v2 = constante.

Recordar que p = F/A F = p.A

Flujo de volumen: (caudal).

Φ = A .v [m ³/s]

Ecuación de Bernoulli: (principio de conservación de la energía) para flujo ideal (sin fricción).

p1 + δ.v1 ²/2 + δ.g.h1 = p2 + δ.v2 ²/2 + δ.g.h2 = constante

p1/δ + v1 ²/2 + g.h1 = p2/δ + v2 ²/2 + g.h2

p/

...

Descargar como (para miembros actualizados)  txt (8.1 Kb)  
Leer 5 páginas más »
Disponible sólo en Clubensayos.com