Matemáticas Aplicadas
20101012 de Febrero de 2013
739 Palabras (3 Páginas)412 Visitas
Definición función
La definición general de función hace referencia a la dependencia entre los elementos de dos conjuntos dados.
Dados dos conjuntos A y B, una función (también aplicación o mapeo) entre ellos es una asociación f que a cada elemento de A le asigna un único elemento de B.Se dice entonces que A es el dominio (también conjunto de partida o conjunto inicial) de f y que B es su condominio (también conjunto de llegada o conjunto final).
Derivada
En matemáticas, la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función según cambie el valor de suvariable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se toma cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado. En términos físicos, representa la cuantía del cambio que se produce sobre una magnitud.
Clasificación de funciones
Clasificación de funciones
Funciones algebraicas
En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:
Funciones explícitas
En las funciones explícitas se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x - 2
Funciones implícitas
En las funciones implícitas no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x - y - 2 = 0
Funciones polinómicas
Las funciones polinómicas vienen definidas por un polinomio.
f(x) = a0 + a1 x + a1 x² + a1 x³ +••• + an xn
Su dominio es , es decir, cualquier número real tiene imagen.
Funciones constantes
El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.
Funciones polinómica de primer grado
f(x) = mx +n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Función afín.
Función lineal.
Función identidad.
Funciones cuadráticas
f(x) = ax² + bx +c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.
Funciones a trozos
Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Funciones en valor absoluto.
Función parte entera de x.
Función mantisa.
Función signo.
Funciones racionales
El criterio viene dado por un cociente entre polinomio:
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.
Funciones radicales
El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.
Funciones trascendentes
En las funciones trascendentes la variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.
Función exponencial
Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia ax se llama función exponencial de base a y exponente x.
Funciones logarítmicas
La función logarítmica en base a es la función inversa de la exponencial en
...