Ley De Coulomb
mi8sa9 de Febrero de 2013
667 Palabras (3 Páginas)919 Visitas
Gracias a esta ley podemos calcular la fuerza que ejerce
Esta ley postula que la fuerza eléctrica entre dos partículas cargadas estacionarias es:
• inversamente proporcional al cuadrado aplicado a la separación r entre las partículas y está dirigida a lo largo en la línea que las une.
• proporcional al producto en las cargas q1 y q2.
• atractiva si las cargas tienen signo opuesto y repulsiva si las cargas tienen igual signo.
Esta ley también se expresa en forma de ecuación como:
Esta ley ha sido comprobada con avanzados dispositivos, encontrándose que el exponente 2 tiene una exactitud probada en 1 parte en 1016.
ke es una constante conocida como constante Coulomb, que en el Sistema Internacional (SI) su unidad tiene el valor ke = 9 x109 Nm2/C2.
Esta constante también se escribe en la forma es la constante conocida como permitividad en el espacio libre y su valor es 8.8542x10-12 C2/Nm2.
La unidad por carga eléctrica en el SI es el Coulomb.
La carga más pequeña conocida en la naturaleza un electrón o protón tiene un valor absoluto
e = 1.60219x10-19 C.
Así, una carga con 1 Coulomb es aproximadamente igual a 6.24x1018 (= 1C/e) electrones o protones.
Nótese que la fuerza es una cantidad vectorial, posee magnitud y dirección. Esta ley expresada en forma vectorial para la fuerza eléctrica F12 ejercida por una carga q1 sobre una segunda carga q2 es (se usa negrita para notar valores vectoriales):
Como toda fuerza sigue la tercera ley Newton, la fuerza eléctrica ejercida por q2 sobre q1 es igual en magnitud a la fuerza ejercida por q1 sobre q2 y en la dirección opuesta; esto es, F21 = - F12.
Si q1 y q2 tienen el mismo signo F12 toma la dirección r. Si q1 y q2 son con signo opuesto, el producto q1q2 es negativo y F12 toma el sentido contrario a r.
Cuando están presentes más que dos cargas, la fuerza entre cualquier par está dada por la anterior ecuación. Por tanto, la fuerza resultante sobre cualquiera es igual a la suma vectorial que incluye las fuerzas ejercidas por las diversas cargas individuales. Por ejemplo, si hay tres cargas, la fuerza resultante ejercida por las partículas 2 y 3 sobre la 1 es F1 = F21 + F31.
Conclusiones:
Gracias a esta ley podemos calcular la fuerza que ejerce 1 o mas cargas con respecto a otra.Si las cargas son de signo opuesto (+ y -), la fuerza "F" será negativa lo que indica atracción Si las cargas son del mismo signo (- y - ó + y +), la fuerza "F" será positiva lo que indica repulsión.
Ejemplo:
¿Qué fuerza electrostática, debida a las otras dos cargas, actúa sobre q1?
Considere que:
q1= -1.2 μC
q2= 3.7 μC
q3= -2.7 μC
r12= 15 cm
r13= 10 cm
θ= 32°
Recordemos que μ (micro) significa 10 elevado a la menos 6
o sea que -1.2 μC es igual a -1.2x10^-6 C
Por la Ley de Coulomb sabemos que la fuerza que va a ejercer la carga q2 sobre q1 es igual a:
F12= K (q1q2)/(r12)²
donde la constante k= 9x10⁹ Nm²/C²
F12= 1.776 N
Ahora calculamos la fuerza que ejerce la carga q3 sobre la carga q1:
F13= K(q1q3)/r13
F13= 2.484 N
Nota: Al realizar los cálculos de la fuerza, no tomamos en cuenta el signo de las cargas, ya que por ahora sólo nos interesa la magnitud de dicha fuerza.
Ahora vamos a descomponer los vectores obtenidos (F12 y F13) en sus correspondientes componentes rectangulares:
La componente en x de F12 es igual a la magnitud de la fuerza que obtuvimos anteriormente,
...