ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Autotranformadores


Enviado por   •  15 de Mayo de 2013  •  1.693 Palabras (7 Páginas)  •  240 Visitas

Página 1 de 7

AUTOTRANSFORMADORES

El autotransformador puede ser considerado simultáneamente como un caso particular del transformador o del bobinado con núcleo de hierro. Tiene un solo bobinado arrollado sobre el núcleo, pero dispone de cuatro bornes, dos para cada circuito, y por ello presenta puntos en común con el transformador. En realidad, lo que conviene es estudiarlo independientemente, pero utilizando las leyes que ya vimos para los otros dos casos, pues así se simplifica notablemente el proceso teórico.

En la práctica se emplean los autotransformadores en algunos casos en los que presenta ventajas económicas, sea por su menor costo o su mayor eficiencia. Pero esos casos están limitados a ciertos valores de la relación de transformación, como se verá en seguida. No obstante. Es tan común que se presente el uso de relaciones de transformación próximas a la unidad, que corresponde dar a los autotransformadores la importancia que tienen, por haberla adquirido en la práctica de su gran difusión.

Para estudiar su funcionamiento, haremos como con los transformadores, es decir, primero consideraremos el principio en que se basan, desde el punto de vista electromagnético, para obtener las relaciones entre las tensiones y las corrientes de sus secciones, ya que no se puede hablar de bobinados en plural. Luego veremos el diagrama vectorial, muy parecido al de transformadores, pero con diferencias que lo distinguen netamente. Y, también, haremos un estudio comparativo entre el autotransformador y el transformador de iguales condiciones de servicio.

La figura siguiente nos muestra un esquema del autotransformador. Consta de un bobinado de extremos A y D, al cual se le ha hecho una derivación en el punto intermedio B. Por ahora llamaremos primario a la sección completa A D y secundario a la porción B D, pero en la práctica puede ser a la inversa, cuando se desea elevar la tensión primaria.

La tensión de la red primaria, a la cual se conectará el autotransformador, es V1, aplicada a los puntos A y D. Como toda bobina con núcleo de hierro, en cuanto se aplica esa tensión circula una corriente que hemos llamado de vacío en la teoría anterior. Sabemos también, que esa corriente de vacío está formada por dos componentes; una parte es la corriente magnetizante, que está atrasada 90° respecto de la tensión, y otra parte que está en fase, y es la que cubre las pérdidas en el hierro, cuyo monto se encuentra multiplicando esa parte de la corriente de vacío, por la tensión aplicada. Llamamos a la corriente total de vacío I0, como lo hemos hecho en otras oportunidades.

PÉRDIDAS Y RENDIMIENTO

Por otra parte, el rendimiento es más elevado cuando se realiza la conexión de autotransformador. Por ejemplo, si el rendimiento del transformador de 100 KVA a plena carga con factor de potencia unidad es 0.9825 cuando se conecta como transformador de dos circuitos, sus pérdidas son:

0.0175 x 100 / 0.9825 = 1.78 KW.

Cuando se conecta como autotransformador, sus pérdidas a plena carga siguen siendo 1.78 KW., pero estas pérdidas son ahora solamente

1.78 / 601.78 = 0.00296

De la potencia de entrada. En consecuencia, su rendimiento a plena carga con factor de potencia unidad como autotransformador es 0.99704. ¡Casi perfecto! .En general el cociente entre en tanto por ciento o por uno de pérdidas de un transformador dado conectado como autotransformador y sus pérdidas como transformador ordinario de dos circuitos es el recíproco del cociente entre las potencias nominales para estas conexiones. Así, pues, por la ecuación:

Valor nominal como autotransformador / Valor nominal como transformador de dos circuitos = EH / (EH – EX)

Pérdidas a plena carga en % del valor nominal del autotransformador / Pérdidas a plena carga en % del valor nominal del transformador de dos circuitos = (EH – EX)/ EH

En la figura puede verse la variación de (EH – EX) / EH con el cociente EH / EX. Así, pues, cuando la razón de transformación EH / EX entre los circuitos de alta y baja tensión es inferior a 2:1, la variación unitaria de tensión (EH – EX) / EH que puede dar el transformador es menor que 1 / 2. Por lo tanto, el ahorro de tamaño y costo y el aumento del rendimiento cuando se utiliza un autotransformador en vez de un transformador de dos circuitos puede ser importante cuando EH / EX sea inferior a 2, si bien estas ventajas del autotransformador no son tan significativas para valores mayores de la razón de transformación EH / EX.

TRANSFORMADORES PARA CIRCUITOS TRIFÁSICOS.

Los principales sistemas de generación y distribución de potencia en el mundo son sistemas trifásicos de corriente alterna (ca), debido a las grandes ventajas que presentan.

Los transformadores son una parte principal en sistemas trifásicos de ca. Por lo que para su utilización en estos sistemas, se pueden considerar dos configuraciones, la primera consiste en tomar tres transformadores monofásicos y conectarlos en un banco trifásico, es decir, tres transformadores por separados, unidos mediante algún tipo de conexión, esta configuración presenta la desventaja de ser más caro que utilizar un solo transformador trifásico, y tiene como ventaja que cualquier unidad del banco puede ser reemplazada individualmente.

En un sistema trifásico las tensiones están desplazadas 120 grados eléctricos, además la relación de transformación

...

Descargar como (para miembros actualizados)  txt (10 Kb)  
Leer 6 páginas más »
Disponible sólo en Clubensayos.com