La Esatica
Gyssie13 de Mayo de 2014
4.359 Palabras (18 Páginas)249 Visitas
ESTÁTICA
INDICE
INTRODUCCIÓN
ELECTROESTÁTICA
HIDROESTATICA
APLICACIÓN DE LA ECUACIÓN DE LA HIDROSTÁTICA
EMPUJE HIDROSTÁTICO: PRINCIPIO DE ARQUÍMEDES
AEROSTATICA
LA ESTATICA DE LOS SÓLIDOS
TERMOESTATICA
BIBLIOGRAFIA
1. INTRODUCCIÓN
La Estática estudia las condiciones de equilibrio de los cuerpos sometidos a diversas fuerzas. Al tratar la Tercera Ley de Newton, se menciona la palabra reacción al resumirse esa Ley en la expresión: “A toda acción corresponde una reacción igual y opuesta”. Se dice que no se trata de dos fuerzas que se equilibran porque no son fuerzas que obren sobre el mismo cuerpo, sin embargo, hay ocasiones en que las fuerzas efectivamente están en equilibrio.
En Estática se usa con frecuencia la palabra “reacción” al hablar de cuerpos en equilibrio, como cuando se coloca un peso en una viga puesta horizontalmente. Pero además de tener en consideración en este factor, hay que tomar en cuenta que el efecto de la fuerza sobre el cuerpo rígido de pende también de su punto de aplicación, esto se refiere a los momentos de las fuerzas con respecto a un punto, considerando que la suma de todos estos debe de ser igual a cero, deben de estar en “equilibrio” para que se cumpla lo antes mencionado.
La Estática es la parte de la física que estudia los cuerpos sobre los que actúan fuerzas y momentos cuyas resultantes son nulas, de forma que permanecen en reposo o en movimiento no acelerado. El objeto de la estática es determinar la fuerza resultante y el momento resultante de todas las fuerzas que actúan sobre un cuerpo para poder establecer sus condiciones de equilibrio.
Un sistema de fuerzas que actúa sobre un cuerpo puede ser reemplazado por una fuerza resultante y por un momento resultante que produzcan sobre el cuerpo el mismo efecto que todas las fuerzas y todos los momentos actuando conjuntamente. Como la fuerza resultante provoca un movimiento de traslación en el cuerpo y el momento resultante un movimiento de rotación, para que el cuerpo se encuentre en equilibrio debe cumplirse, simultáneamente, que la fuerza resultante y el momento resultante sean nulos. No obstante, equilibrio no es sinónimo de reposo, ya que una fuerza resultante nula y un momento resultante nulo implican una aceleración lineal y angular nulas, respectivamente, pero el cuerpo puede encontrarse en reposo o tener un movimiento rectilíneo y uniforme. Así, un cuerpo está en equilibrio cuando se encuentra en reposo o cuando se mueve con movimiento rectilíneo y uniforme. Véase Mecánica.
Esta condición de equilibrio implica que una fuerza aislada aplicada sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas, actuando sobre la misma línea de acción, sí producen equilibrio.
El equilibrio puede ser de tres clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la vertical del centro de gravedad pase siempre por ella.
ELECTROESTATICA.
Categoría de fenómenos físicos originados por la existencia de cargas eléctricas y por la interacción de las mismas. Cuando una carga eléctrica se encuentra estacionaria, o estática, produce fuerzas eléctricas sobre las otras cargas situadas en su misma región del espacio; cuando está en movimiento, produce además efectos magnéticos. Los efectos eléctricos y magnéticos dependen de la posición y movimiento relativos de las partículas cargadas. En lo que respecta a los efectos eléctricos, estas partículas pueden ser neutras, positivas o negativas. La electricidad se ocupa de las partículas cargadas positivamente, como los protones, que se repelen mutuamente, y de las partículas cargadas negativamente, como los electrones, que también se repelen mutuamente. En cambio, las partículas negativas y positivas se atraen entre sí. Este comportamiento puede resumirse diciendo que las cargas del mismo signo se repelen y las cargas de distinto signo se atraen.
ELECTRICIDAD ESTATICA
La electricidad estática, la cual, como su nombre lo indica, permanece en un lugar. Un ejemplo: Si usted frota en su ropa un globo inflado (de preferencia un suéter de lana) o en su propio cabello, puede poner el globo contra la pared y ahí permanecerá. ¿Por qué? Cuando es frotado, el globo toma electrones del suéter o del cabello y adquiere una ligera carga negativa, la cual es atraída por la carga positiva de la pared.
Ahora, de la manera indicada, frote usted dos globos inflados, a cada uno de ellos áteles un hilo y trate de que se acerquen uno al otro. ¿Qué ocurre? Los globos evitan tocarse entre sí. ¿Por qué? La explicación es que ambos tienen cargas negativas y éstas se repelen. Las cargas positivas se repelen y las cargas negativas también. En cambio, las cargas diferentes se atraen. Esto mismo ocurre con los polos de cualquier imán: el "norte" tiende a unirse con el "sur", pero los polos iguales siempre se repelen entre sí.
La electricidad estática puede ocasionarnos descargas o lo que llamamos "toques". Si usted camina sobre una alfombra o tapete, su cuerpo recoge electrones y cuando toca algo metálico, como es el picaporte de la puerta o cualquier otra cosa con carga positiva, la electricidad produce una pequeña descarga entre el objeto y sus dedos, lo que, además de sorpresivo, a veces, resulta un tanto doloroso.
Otra manifestación de la electricidad estática son los relámpagos y truenos de una tormenta eléctrica: las nubes adquieren cargas eléctricas por la fricción de los cristales de hielo que se mueven en su interior, y esas cargas de electrones llegan a ser tan grandes que éstos se precipitan hacia el suelo o hacia otra nube, lo cual provoca el relámpago y éste el trueno. El relámpago viaja a la velocidad de la luz (más de 300 mil kilómetros por segundo) y el trueno a la velocidad del sonido (poco más de 300 metros por segundo). Por esta razón es que primero vemos el relámpago y después escuchamos el trueno.
3. HIDROSTATICA
La estática de fluidos estudia el equilibrio de gases y líquidos. A partir de los conceptos de densidad y de presión se obtiene la ecuación fundamental de la hidrostática, de la cual el principio de Pascal y el de Arquímedes pueden considerarse consecuencias. El hecho de que los gases, a diferencia de los líquidos, puedan comprimirse hace que el estudio de ambos tipos de fluidos tengan algunas características diferentes. En la atmósfera se dan los fenómenos de presión y de empuje que pueden ser estudiados de acuerdo con los principios de la estática de gases.
Se entiende por fluido un estado de la materia en el que la forma de los cuerpos no es constante, sino que se adapta a la del recipiente que los contiene. La materia fluida puede ser trasvasada de un recipiente a otro, es decir, tiene la capacidad de fluir. Los líquidos y los gases corresponden a dos tipos diferentes de fluidos. Los primeros tienen un volumen constante que no puede mortificarse apreciablemente por compresión. Se dice por ello que son fluidos incompresibles. Los segundos no tienen un volumen propio, sino que ocupan el del recipiente que los contiene; son fluidos compresibles porque, a diferencia de los líquidos, sí pueden ser comprimidos.
El estudio de los fluidos en equilibrio constituye el objeto de la estática de fluidos, una parte de la física que comprende la hidrostática o estudio de los líquidos en equilibrio, y la aerostática o estudio de los gases en equilibrio y en particular del aire.
Todos los líquidos pesan, por ello cuando están contenidos en un recipiente las capas superiores oprimen a las inferiores, generándose una presión debida al peso. La presión en un punto determinado del líquido deberá depender entonces de la altura de la columna de líquido que tenga por encima suyo.
Considérese un punto cualquiera del líquido que diste una altura h de la superficie libre de dicho líquido. La fuerza del peso debido a una columna cilíndrica de líquido de base S situada sobre él puede expresarse en la forma
Fpeso = mg = · V · g = · g · h · S
siendo V el volumen de la columna y la densidad del líquido. Luego la presión debida al peso vendrá dada por: la presión en un punto
La definición de la presión como cociente entre la fuerza y la superficie se refiere a una fuerza constante que actúa perpendicularmente sobre una superficie plana. En los líquidos en equilibrio las fuerzas asociadas a la presión son en cada punto perpendiculares a la superficie del recipiente, de ahí que la presión sea considerada como una magnitud escalar cociente de dos magnitudes vectoriales de igual dirección: la fuerza y el vector superficie. Dicho vector tiene por módulo el área y por dirección la perpendicular a la superficie.
Cuando la fuerza no es constante, sino que varía de un punto a
...