ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matematicasa

trakalosa6 de Septiembre de 2012

3.956 Palabras (16 Páginas)261 Visitas

Página 1 de 16

1.3 Operaciones básicas (Suma, Resta, Multiplicación, División)

Suma de números binarios

La tabla de sumar para números binarios es la siguiente:

+ 0 1

0 0 1

1 1 10

Las posibles combinaciones al sumar dos bits son:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Note que al sumar 1 + 1 es 102, es decir, llevamos 1 a la siguiente posición de la izquierda (acarreo). Esto es equivalente, en el sistema decimal a sumar 9 + 1, que da 10: cero en la posición que estamos sumando y un 1 de acarreo a la siguiente posición.

Ejemplo

Acarreo 1

1 0 0 1 1 0 0 0

+ 0 0 0 1 0 1 0 1

Resultado 1 0 1 0 1 1 0 1

Se puede convertir la operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas la columnas (exactamente como en decimal).

________________________________________

Resta de números binarios

El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.

Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:

0 - 0 = 0

1 - 0 = 1

1 - 1 = 0

0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)

La resta 0 - 1 se resuelve, igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1, lo que equivale a decir en el sistema decimal, 2 - 1 = 1.

En decimal, por ejemplo tienes 100-19, obviamente a 0 no le puedes quitar 9, así que debemos tomar prestado 1 para volverlo un 10 (en decimal la base es 10), y así si 10-9=1.

En binarios pasa lo mismo, no le puedes quitar 1 a 0, debes de tomar 1 prestado al de un lado, pero cuidado aquí viene lo complicado tu numero no se va a volver 10, recuerda que en binario la base es 2 y por lo tanto se volverá 2 en binario, y ahora sí a 2 le quitas 1, 2-1=1, y continuas restando pero recuerda que llevas 1, porque pediste prestado.

Ejemplo para que le entiendas mejor, vamos a restar 201 - 67, ya sabemos que es 134, vamos a hacerlo en binario :

1 1 0 0 1 0 0 1.......................201

- 0 1 0 0 0 0 1 1.......................67

Tomamos los dos últimos números, 1-1 es igual a 0, y no llevamos nada (no pedimos prestado)

1 1 0 0 1 0 0 1

- 0 1 0 0 0 0 1 1

------------------------

0

Ahora la siguiente columna 0-1, ya dijimos que no se puede, así que va a tomar 1 prestado al de la columna del lado izquierdo, se que vas a decir "es un cero, no nos puede prestar 1", lo que pasa es que ese cero le pide a su vez al de lado, y así hasta que encuentres un 1, pero no te fijes en eso, vamos a seguir restando y no nos vamos a preocupar por eso ahora, entonces ahora nos prestaron 1 (no importa quién) y tenemos un 1 0 (este numero es 2 en binario no 10 en decimal, no te vayas a confundir), entonces en binario tienes 10-1, que en decimal es 2-1=1, y llevamos 1 (porque pedimos 1 prestado)

1 1 0 0 1 0 0 1 arriba

- 0 1 0 0 0 0 1 1 abajo

------------------------

1 0

Para la siguiente columna tenemos 0 - 0, pero recuerda que tomamos 1 prestado así que en realidad tenemos 0 - 1 (le sumamos el 1 al de abajo), de nuevo tenemos que pedir prestado y entonces tenemos en binaria 1 0 -1 que en decimal es 2-1=1, y de nuevo llevamos 1

1 1 0 0 1 0 0 1

- 0 1 0 0 0 0 1 1

------------------------

1 1 0

Continuamos con 1 - 0 , pero como llevamos 1 tenemos ahora 1 - 1, esto si lo podemos resolver 1 - 1 = 1 (en binario y decimal).

1 1 0 0 1 0 0 1

- 0 1 0 0 0 0 1 1

------------------------

0 1 1 0

Lo demás es muy fácil:

0 - 0=0

0 - 0=0

1 - 1=0

1 - 0=1

1 1 0 0 1 0 0 1

- 0 1 0 0 0 0 1 1

------------------------

1 0 0 0 0 1 1 0 que en decimal es 134.

Es lo mismo que la resta en decimal, pides prestado y llevas, nada más debes de ser cuidadoso y recordar que tu base es 2.

"En este mundo solo existen 10 tipos de personas, las que saben binario y las que no" =)

________________________________________

PRODUCTO DE NÚMEROS BINARIOS

La tabla de multiplicar para números binarios es la siguiente:

• 0 1

0 0 0

1 0 1

El algoritmo del producto en binario es igual que en números decimales; aunque se lleva a cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.

Por ejemplo, multipliquemos 10110 por 1001:

10110 X 1001

10110

00000

00000

10110

11000110

________________________________________

División de números binarios

La división en binario es similar al decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, éstas deben ser realizadas en binario.

Ejemplo

Dividir 100010010 (274) entre 1101 (13):

100010010 |1101

-0000 010101

10001

-1101

01000

- 0000

10000

- 1101

00011

- 0000

01110

- 1101

00001

Sistemas numéricos binario octal decimal hexadecimal

Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender y usar datos que están en este formato binario, o sea, de dos estados. Los unos y los ceros se usan para representar los dos estados posibles de un componente electrónico de un computador. Se denominan dígitos binarios o bits. Los 1 representan el estado ENCENDIDO, y los 0 representan el estado APAGADO.

El Código americano normalizado para el intercambio de información (ASCII) es el código que se usa más a menudo para representar los datos alfanuméricos de un computador. ASCII usa dígitos binarios para representar los símbolos que se escriben con el teclado. Cuando los computadores envían estados de ENCENDIDO/APAGADO a través de una red, se usan ondas eléctricas, de luz o de radio para representar los unos y los ceros. Observe que cada carácter tiene un patrón exclusivo de ocho dígitos binarios asignados para representar al carácter.

Debido a que los computadores están diseñados para funcionar con los interruptores ENCENDIDO/APAGADO, los dígitos y los números binarios les resultan naturales. Los seres humanos usan el sistema numérico decimal, que es relativamente simple en comparación con las largas series de unos y ceros que usan los computadores. De modo que los números binarios del computador se deben convertir en números decimales.

A veces, los números binarios se deben convertir en números Hexadecimales (hex), lo que reduce una larga cadena de dígitos binarios a unos pocos caracteres hexadecimales. Esto hace que sea más fácil recordar y trabajar con los números.

________________________________________

Bits y Bytes

Un número binario 0 puede estar representado por 0 voltios de electricidad (0 = 0 voltios).

Un número binario 1 puede estar representado por +5 voltios de electricidad (1 = +5 voltios).

Los computadores están diseñados para usar agrupaciones de ocho bits. Esta agrupación de ocho bits se denomina byte. En un computador, un byte representa una sola ubicación de almacenamiento direccionable. Estas ubicaciones de almacenamiento representan un valor o un solo carácter de datos como, por ejemplo, un código ASCII. La cantidad total de combinaciones de los ocho interruptores que se encienden y se apagan es de 256. El intervalo de valores de un byte es de 0 a 255. De modo que un byte es un concepto importante que se debe entender si uno trabaja con computadores y redes.

________________________________________

Sistemas Numéricos

Sistema Numérico de Base 10

Los sistemas numéricos están compuestos por símbolos y por las normas utilizadas para interpretar estos símbolos. El sistema numérico que se usa más a menudo es el sistema numérico decimal, o de Base 10. El sistema numérico de Base 10 usa diez símbolos:

...

Descargar como (para miembros actualizados) txt (21 Kb)
Leer 15 páginas más »
Disponible sólo en Clubensayos.com