Asimetria
Janetzi6 de Julio de 2013
495 Palabras (2 Páginas)323 Visitas
ASIMETRIA
Las medidas de asimetría son indicadores que permiten establecer el grado de simetría (o asimetría) que presenta una distribución de probabilidad de una variable aleatoria sin tener que hacer su representación gráfica.
Como eje de simetría consideramos una recta paralela al eje de ordenadas que pasa por la media de la distribución. Si una distribución es simétrica, existe el mismo número de valores a la derecha que a la izquierda de la media, por tanto, el mismo número de desviaciones con signo positivo que con signo negativo. Decimos que hay asimetría positiva (o a la derecha) si la "cola" a la derecha de la media es más larga que la de la izquierda, es decir, si hay valores más separados de la media a la derecha. Diremos que hay asimetría negativa (o a la izquierda) si la "cola" a la izquierda de la media es más larga que la de la derecha, es decir, si hay valores más separados de la media a la izquierda.
Formula:
CURTOSIS
La curtosis es una medida de la forma o apuntamiento de las distribuciones. Así las medidas de curtosis (también llamadas de apuntamiento o de concentración central) tratan de estudiar la mayor o menor concentración de frecuencias alrededor de la media y en la zona central de la distribución.
Formula:
CORRELACIÓN DE PEARSON
El coeficiente de correlación de Pearson es un índice que mide la relación lineal entre dos variables aleatorias cuantitativas. A diferencia de la covarianza, la correlación de Pearson es independiente de la escala de medida de las variables.
El coeficiente de correlación entre dos variables aleatorias X e Y es el cociente
donde σXY es la covarianza de (X,Y) y σX y σY las desviaciones típicas de las distribuciones marginales.
VARIANZA
La varianza o coeficiente de variación (que suele representarse como σ2) de una variable aleatoria es una medida de su dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media.
Está medida en unidades distintas de las de la variable. Por ejemplo, si la variable mide una distancia en metros, la varianza se expresa en metros al cuadrado. La desviación estándar, la raíz cuadrada de la varianza, es una medida de dispersión alternativa expresada en las mismas unidades.
Dada una variable aleatoria X con media μ = E(X), se define su varianza, Var(X) (también representada como o, simplemente σ2), como
DESVIACIÓN TÍPICA
La desviación típica es la raíz cuadrada de la varianza.
Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación.
La desviación típica se representa por σ.
MEDIDA DE DISPERSIÓN
Las medidas de dispersión, también llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio de un número, si las diferentes puntuaciones de una variable están muy alejadas de la media. Cuanto mayor sea ese valor, mayor será la variabilidad, cuanto menor sea, más homogénea será a la media. Así se sabe si todos los casos son parecidos o varían mucho entre ellos.
R = Xmáx.-Xmín = Xn-X1
...