ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fuentes del campo magnético


Enviado por   •  1 de Diciembre de 2014  •  Trabajos  •  1.620 Palabras (7 Páginas)  •  404 Visitas

Página 1 de 7

Fuentes del campo magnético:

Un campo magnético tiene dos fuentes que lo originan. Una de ellas es una corriente eléctrica de conducción, que da lugar a un campo magnético estático, si es constante. Por otro lado una corriente de desplazamiento origina un campo magnético variante en el tiempo, incluso aunque aquella sea estacionaria.

La relación entre el campo magnético y una corriente eléctrica está dada por la ley de Ampere. El caso más general, que incluye a la corriente de desplazamiento, lo da la ley de Ampere-Maxwell.

• Campo magnético producido por una carga puntual:

El campo magnético generado por una única carga en movimiento (no por una corriente eléctrica) se calcula a partir de la siguiente expresión:

Donde:

.

Esta última expresión define un campo vectorial solenoidal, para distribuciones de cargas en movimiento la expresión es diferente, pero puede probarse que el campo magnético sigue siendo un campo solenoidal.

• Campo magnético producido por una distribución de cargas:

La inexistencia de cargas magnéticas lleva a que el campo magnético es un campo solenoidal lo que lleva a que localmente puede ser derivado de un potencial vector , es decir:

A su vez este potencial vector puede ser relacionado con el vector densidad de corriente mediante la relación:

La ecuación anterior planteada sobre , con una distribución de cargas contenida en un conjunto compacto, la solución es expresable en forma de integral. Y el campo magnético de una distribución de carga viene dado por:

• Inexistencia de cargas magnéticas aisladas:

Cabe destacar que, a diferencia del campo eléctrico, en el campo magnético no se ha comprobado la existencia de monopolos magnéticos, sólo dipolos magnéticos, lo que significa que las líneas de campo magnético son cerradas, esto es, el número neto de líneas de campo que entran en una superficie es igual al número de líneas de campo que salen de la misma superficie. Un claro ejemplo de esta propiedad viene representado por las líneas de campo de un imán, donde se puede ver que el mismo número de líneas de campo que salen del polo norte vuelve a entrar por el polo sur, desde donde vuelven por el interior del imán hasta el norte.

• Energía almacenada en campos magnéticos:

La energía es necesaria para generar un campo magnético, para trabajar contra el campo eléctrico que un campo magnético crea y para cambiar la magnetización de cualquier material dentro del campo magnético. Para los materiales no-dispersivos, se libera esta misma energía tanto cuando se destruye el campo magnético para poder modelar esta energía, como siendo almacenado en el campo magnético.

Para materiales lineales y no dispersivos (tales que donde μ es independiente de la frecuencia), la densidad de energía es:

Si no hay materiales magnéticos alrededor, entonces el μ se puede substituir por μ0. La ecuación antedicha no se puede utilizar para los materiales no lineales, se utiliza una expresión más general dada abajo.

Generalmente la cantidad incremental de trabajo por el δW del volumen de unidad necesitado para causar un cambio pequeño del δB del campo magnético es: δW= H*δB

Una vez que la relación entre H y B se obtenga, esta ecuación se utiliza para determinar el trabajo necesitado para alcanzar un estado magnético dado. Para los materiales como los ferro magnéticos y superconductores el trabajo necesitado también dependerá de cómo se crea el campo magnético.

Determinación del campo de inducción magnética B:

El campo magnético para cargas que se mueven a velocidades pequeñas comparadas con velocidad de la luz, puede representarse por un campo vectorial. Sea una carga eléctrica de prueba en un punto P de una región del espacio moviéndose a una cierta velocidad arbitraria v respecto a un cierto observador que no detecte campo eléctrico. Si el observador detecta una deflexión de la trayectoria de la partícula entonces en esa región existe un campo magnético. El valor o intensidad de dicho campo magnético puede medirse mediante el llamado vector de inducción magnética B, a veces llamado simplemente "campo magnético", que estará relacionado con la fuerza F y la velocidad v medida por dicho observador en el punto P: Si se varía la dirección de v por P, sin cambiar su magnitud, se encuentra, en general, que la magnitud de F varía, si bien se conserva perpendicular a v . A partir de la observación de una pequeña carga eléctrica de prueba puede determinarse la dirección y módulo de dicho vector del siguiente modo:

• La dirección del "campo magnético" se define operacionalmente del siguiente modo. Para una cierta dirección de v, la fuerza F se anula. Se define esta dirección como la de B.

• Una vez encontrada esta dirección el módulo del "campo magnético" puede encontrarse fácilmente ya que es posible orientar a v de tal manera que la carga de prueba se desplace perpendicularmente a B. Se encuentra, entonces, que la F es máxima y se define la magnitud de B determinando el valor de esa fuerza máxima:

En consecuencia: Si una carga de prueba positiva se dispara con una velocidad v por un punto P y si obra una fuerza lateral F sobre la carga que se mueve, hay una inducción magnética B en el punto P siendo B el vector que satisface la relación:

La magnitud de F, de acuerdo a las reglas del producto vectorial, está dada por la expresión:

Expresión en la que es el ángulo entre v y B.

El hecho de que la fuerza magnética sea siempre perpendicular a la dirección del movimiento implica que el trabajo realizado por la misma sobre la carga, es cero. En efecto, para un elemento de longitud de la trayectoria de la partícula, el trabajo es que vale cero por ser y perpendiculares. Así pues, un campo magnético estático no puede cambiar la energía cinética de una carga en movimiento.

Si una partícula cargada se mueve a través de una región en la que coexisten un campo eléctrico y uno magnético la fuerza resultante está dada por:

Campo magnético en relatividad:

• Campo medido por dos observadores:

La teoría de la relatividad especial probó que de la misma manera que espacio y tiempo no son conceptos absolutos, la parte eléctrica y magnética de un campo electromagnético dependen del observador. Eso significa que dados dos observadores y en movimiento relativo un respecto a otro el campo magnético y eléctrico medido por cada uno de ellos no será el mismo. En el contexto de la relatividad especial si los dos observadores se mueven uno respecto a otro con velocidad uniforme v dirigida según el eje X, las componentes de los campos eléctricos medidas por uno y otro observador vendrán relacionadas por:

Y para los campos magnéticos se tendrá:

Nótese que en particular un observador en reposo respecto a una carga eléctrica detectará sólo campo eléctrico, mientras que los observadores que se mueven respecto a las cargas detectarán una parte eléctrica y magnética.

• Campo creado por una carga en movimiento:

El campo magnético creado por una carga en movimiento puede probarse por la relación general:

Que es válida tanto en mecánica newtoniana como en mecánica relativista. Esto lleva a que una carga puntual moviéndose a una velocidad v proporciona un campo magnético dado por:

Unidades y magnitudes típicas:

La unidad de B en el SI es el tesla, que equivale a wéber por metro cuadrado (Wb/m²) o a voltio segundo por metro cuadrado (V s/m²); en unidades básicas es kg s−2 A−1. Su unidad en sistema de Gauss es el gauss (G); en unidades básicas es cm−1/2 g1/2 s−1.

La unidad de H en el SI es el amperio por metro (A/m) (a veces llamado ampervuelta por metro, (Av/m)). Su unidad en el sistema de Gauss es el oersted (Oe), que es dimensionalmente igual al Gauss.

La magnitud del campo magnético terrestre en la superficie de la Tierra es de alrededor de 0.5G. Los imanes permanentes comunes, de hierro, generan campos de unos pocos cientos de Gauss, esto es a corto alcance la influencia sobre una brújula es alrededor de mil veces más intensa que la del campo magnético terrestre; como la intensidad se reduce con el cubo de la distancia, a distancias relativamente cortas el campo terrestre vuelve a dominar. Los imanes comerciales más potentes, basados en combinaciones de metales de transición y tierras raras generan campos hasta diez veces más intensos, de hasta 3000-4000 G, esto es, 0.3-0.4 T. El límite teórico para imanes permanentes es alrededor de diez veces más alto, unos 3 Tesla. Los centros de investigación especializados obtienen de forma rutinaria campos hasta diez veces más intensos, unos 30T, mediante electroimanes; se puede doblar este límite mediante campos pulsados, que permiten enfriarse al conductor entre pulsos. En circunstancias extraordinarias, es posible obtener campos incluso de 150 T o superiores, mediante explosiones que comprimen las líneas de campo; naturalmente en estos casos el campo dura sólo unos microsegundos. Por otro lado, los campos generados de forma natural en la superficie de un púlsar se estiman en el orden de los cientos de millones de Tesla.

En el mundo microscópico, atendiendo a los valores del momento dipolar de iones magnéticos típicos y a la ecuación que rige la propagación del campo generado por un dipolo magnético, se verifica que a un nanómetro de distancia, el campo magnético generado por un electrón aislado es del orden de 3 G, el de una molécula típica, del orden de 30 G y el de un ion magnético típico puede tener un valor intermedio, de 5 a 15 G. A un Angstrom, que es un valor corriente para un radio atómico y por tanto el valor mínimo para el que puede tener sentido referirse al momento magnético de un ion, los valores son mil veces más elevados, esto es, del orden de magnitud del Tesla.

...

Descargar como  txt (9.8 Kb)  
Leer 6 páginas más »
txt