Materiales Ceramicos
1213110721 de Abril de 2013
735 Palabras (3 Páginas)502 Visitas
Introducción materiales cerámicos
Un material cerámico es un tipo de material inorgánico, no metálico, buen aislante y que además tiene la propiedad de tener una temperatura de fusión y resistencia muy elevada.
Introducción de Propiedades mecánicas
Muchos materiales, cuando prestan servicio, están sometidos a fuerzas o cargas, ejemplos de ello son las aleaciones de aluminio con las cuales se construyen las alas de los aviones, el acero de los ejes de los automóviles o las vigas y pilares de los edificios. En tales situaciones es necesario conocer las características del material y diseñar la pieza de tal manera que cualquier deformación resultante no sea excesiva y no se produzca la rotura. El comportamiento mecánico o las propiedades mecánicas de un material reflejan la relación entre la fuerza aplicada y la respuesta del material (o sea, su deformación). Algunas de las propiedades mecánicas más importantes son la resistencia, la dureza, la ductilidad, la tenacidad y la rigidez. Tales propiedades determinan sus limitaciones para aplicaciones estructurales donde se requiere que el material soporte cargas.
La respuesta de los materiales a las fuerzas aplicadas depende de:
1.- Tipo de enlace.
2.- Disposición estructural de los átomos o moléculas.
3.-Tipo y número de imperfecciones, que están siempre presentes en los sólidos, excepto en raras circunstancias.
Propiedades mecánicas de los cerámicos
Los materiales cerámicos son generalmente frágiles o vidriosos. Casi siempre se fracturan ante esfuerzos de tensión y presentan poca elasticidad, dado que tienden a ser materiales porosos. Los poros y otras imperfecciones microscópicas actúan como entallas o concentradores de esfuerzo, reduciendo la resistencia a los esfuerzos mencionados.
El módulo de elasticidad alcanza valores bastante altos del orden de 311 GPa en el caso del Carburo de Titanio (TiC). El valor del módulo de elasticidad depende de la temperatura, disminuyendo de forma no lineal al aumentar ésta.
Estos materiales muestran deformaciones plásticas. Sin embargo, debido a la rigidez de la estructura de los componentes cristalinos hay pocos sistemas de deslizamientos para dislocaciones de movimiento y la deformación ocurre de forma muy lenta. Con los materiales no cristalinos (vidriosos), la fluidez viscosa es la principal causa de la deformación plástica, y también es muy lenta. Aun así, es omitido en muchas aplicaciones de materiales cerámicos.
Tienen elevada resistencia a la compresión si la comparamos con los metales incluso a temperaturas altas (hasta 1.500 °C). Bajo cargas de compresión las grietas incipientes tienden a cerrarse, mientras que bajo cargas de tracción o cizalladura las grietas tienden a separarse, dando lugar a la fractura.
Los valores de tenacidad de fractura en los materiales cerámicos son muy bajos (apenas sobrepasan el valor de 1 MPa.m1/2), valores que pueden ser aumentados considerablemente mediante métodos como el reforzamiento mediante fibras o la transformación de fase en circonia.
Una propiedad importante es el mantenimiento de las propiedades mecánicas a altas temperaturas. Su gran dureza los hace un material ampliamente utilizado como abrasivo y como puntas cortantes de herramientas.
Algunos materiales cerámicos pueden soportar temperaturas extremadamente altas sin perder su solidez. Son los denominadosmateriales refractarios. Generalmente tienen baja conductividad térmica por lo que son empleados como aislantes. Por ejemplo, partes de los cohetes espaciales son construidos de azulejos cerámicos que protegen la nave de las altas temperaturas causadas durante la entrada a la atmósfera.
Por lo general los materiales cerámicos presentan un buen comportamiento a alta temperatura mientras que pueden sufrir roturas por choque térmico a temperaturas
...