Materiales Metalicos
MurasakiHime2 de Marzo de 2015
3.057 Palabras (13 Páginas)232 Visitas
Materiales metálicos
Tabla periódica de los elementos
La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos químicos conforme a sus propiedades y características; su función principal es establecer un orden específico agrupando elementos. Suele atribuirse la tabla a Dimitri Mendeléyev
Metales, no metales, metaloides y metales de transición
La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctica y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias tanto en las propiedades físicas como en las químicas.
Metales del bloque P (orbital P)
Los elementos metálicos situados en la tabla periódica junto a los metaloides (o semimetales), dentro del bloque p se distinguen de los metales de otros bloques de la tabla; en algunos casos son denominados "otros metales". Tienden a ser blandos y a tener puntos de fusión bajos. Estos elementos son: Aluminio, Galio, Indio, Estaño, Talio, Plomo y Bismuto.
¿Qué es un metal?
Se denomina metal a los elementos químicos caracterizados por ser buenos conductores del calor y la electricidad. Poseen alta densidad y son sólidos en temperaturas normales (excepto el mercurio); sus sales forman iones electropositivos (cationes) en disolución.
La ciencia de materiales define un metal, como un material en el que existe un solapamiento entre la banda de valencia y la banda de conducción en su estructura electrónica (enlace metálico). Esto le da la capacidad de conducir fácilmente calor y electricidad, y generalmente la capacidad de reflejar la luz, lo que le da su peculiar brillo.
Un enlace metálico es un enlace químico que mantiene unidos los átomos (unión entre núcleos atómicos y los electrones de valencia, que se juntan alrededor de éstos como una nube) de los metales entre sí.
Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas. Se trata de líneas tridimensionales que adquieren estructuras tales como: la típica de empaquetamiento compacto de esferas (hexagonal compacta), cúbica centrada en las caras o la cúbica centrada en el cuerpo.
Electrones de valencia
Los electrones de valencia son los electrones que se encuentran en los mayores niveles de energía del átomo, siendo estos los responsables de la interacción entre átomos de distintas especies o entre los átomos de un mismo orbital. Los electrones en los niveles de energía externos son aquellos que serán utilizados en la formación de compuestos y a los cuales se les denomina como electrones de valencia. Estos electrones, son los que presentan la facilidad de formar enlaces. Estos enlaces pueden darse de diferente manera, ya sea por intercambio de estos electrones, por compartición de pares entre los átomos en cuestión o por el tipo de interacción que se presenta en el enlace metálico, que consiste en un "traslape" de bandas. Según sea el número de estos electrones, será el número de enlaces que puede formar cada átomo con otro u otros.
Propiedades de los metales
Los metales poseen ciertas propiedades físicas características, entre ellas son conductores de la electricidad. La mayoría de ellos son de color grisáceo, pero algunos presentan colores distintos; el bismuto (Bi) es rosáceo, el cobre (Cu) rojizo y el oro (Au) amarillo. En otros metales aparece más de un color; este fenómeno se denomina policromismo. Otras propiedades son:
Maleabilidad: capacidad de los metales de hacerse láminas al ser sometidos a esfuerzos de compresión.
Ductilidad: propiedad de los metales de moldearse en alambre e hilos al ser sometidos a esfuerzos de tracción.
Tenacidad: resistencia que presentan los metales al romperse o al recibir fuerzas bruscas (golpes, etc.)
Resistencia mecánica: capacidad para resistir esfuerzo de tracción, compresión, torsión y flexión sin deformarse ni romperse.
Los metales son materiales que tienen una elevada dilatación, en parte debido a su conductividad. Las dilataciones son perceptibles a veces aun con los cambios de temperatura ambiental. Se miden linealmente y se fija la unidad de longitud para la variación de 1 °C de temperatura.
Aleaciones
Una aleación es una combinación, de propiedades metálicas, que está compuesta de dos o más elementos, de los cuales, al menos uno es un metal. Las aleaciones están constituidas por elementos metálicos como Fe (hierro), Al (aluminio), Cu (cobre), Pb (plomo), ejemplos concretos de una amplia gama de metales que se pueden alear. El elemento aleante puede ser no metálico, como: P (fósforo), C (carbono), Si (silicio), S (azufre), As (arsénico).
Las aleaciones presentan brillo metálico y alta conductividad eléctrica y térmica, aunque usualmente menor que los metales puros. Las propiedades físicas y químicas son, en general, similares a la de los metales, sin embargo las propiedades mecánicas tales como dureza, ductilidad, tenacidad y otras pueden ser muy diferentes, de ahí el interés que despiertan estos materiales.
Hay ciertas concentraciones específicas de cada aleación para las cuales la temperatura de fusión se unifica. Esa concentración y la aleación obtenida reciben el nombre de eutéctica, y presenta un punto de fusión más bajo que los puntos de fusión de los componentes.
Las aleaciones más comunes utilizadas en la industria son:
Acero: Es aleación de hierro con una cantidad de carbono variable entre el 0,008 y el 1,7% en peso de su composición, sobrepasando el 1.7% (hasta 6.67%) pasa a ser una fundición.
Acero inoxidable: El acero inoxidable se define como una aleación de acero con un mínimo del 10 % al 12 % de cromo contenido en masa.
Alnico: Formada principalmente de cobalto (5.24%), aluminio (8-12%) y níquel (15-26%), aunque también puede contener cobre (6%), en ocasiones titanio (1%) y el resto de hierro.
Alpaca: Es una aleación ternaria compuesta por zinc (8-45%), cobre (45-70%) y níquel (8-20%).
Bronce: Es toda aleación metálica de cobre y estaño en la que el primero constituye su base y el segundo aparece en una proporción del 3 al 20 %.
Constantán: Es una aleación, generalmente formada por un 55% de cobre y un 45% de níquel.
Cuproníquel: Es una aleación de cobre, níquel y las impurezas de la consolidación, tales como hierro y manganeso.
Cuproaluminio: Es una aleación de cobre con aluminio.
Latón: Es una aleación de cobre con zinc.
Magal: Es una aleación de magnesio, al que se añade aluminio (8 o 9%), zinc (1%) y manganeso (0.2%).
Magnam: Es una aleación de Manganeso que se le añade Aluminio y Zinc.
Nicrom: Es una aleación compuesta de un 80% de níquel y un 20% de cromo.
Nitinol: titanio y níquel.
Oro blanco (electro): Es una aleación de oro y algún otro metal blanco, como la plata, paladio, o níquel.
Peltre: Es una aleación compuesta por estaño, cobre, antimonio y plomo.
Plata de ley
Zamak: Es una aleación de zinc con aluminio, magnesio y cobre.
Materiales ferrosos
Todo material que en su composición contenga una proporción de hierro. La producción mundial de metales ferrosos es más de veinte veces superior a la del resto de los metales juntos. Esto es debido por un lado a su abundancia y por otro a la gran cantidad y variedad de productos que se pueden obtener a partir del hierro.
No se conoce con exactitud la fecha en que se descubrió la técnica de fundir mineral de hierro para producir un metal susceptible de ser utilizado. Los primeros utensilios de hierro descubiertos por los arqueólogos en Egipto datan del año 3000 a.C., y se sabe que antes de esa época se empleaban adornos de hierro. Los griegos ya conocían hacia el 1000 a.C. la técnica, de cierta complejidad, para endurecer armas de hierro mediante tratamiento térmico, todas las aleaciones de hierro fabricadas hasta el siglo XIV d.C.) se clasificarían en la actualidad como hierro forjado.
Para producir esas aleaciones se calentaba una masa de mineral de hierro y carbón vegetal en un horno o forja con tiro forzado. Ese tratamiento reducía el mineral a una masa esponjosa de hierro metálico llena de una escoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta esponja de hierro se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para expulsar la escoria y soldar y consolidar el hierro.
Después del siglo XIV se aumentó el tamaño de los hornos utilizados para la fundición y se incrementó el tiro para forzar el paso de los gases de combustión por la carga o mezcla de materias primas. En estos hornos de mayor tamaño el mineral de hierro de la parte superior del horno se reducía a hierro metálico y a continuación absorbía más carbono como resultado de los gases que lo atravesaban. El producto de estos hornos era el llamado arrabio, una aleación que funde a una temperatura menor que el acero o el hierro forjado. El arrabio se refinaba después para fabricar acero.
La producción moderna de acero emplea altos hornos que son modelos perfeccionados de los usados antiguamente. El proceso de refinado del arrabio mediante chorros de aire se debe al inventor británico Henry Bessemer, que en 1855 desarrolló el horno o convertidor que lleva su nombre.
Las escorias son un subproducto de la fundición de la mena para purificar
...