ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Optica Geometrica

jahaziel28 de Septiembre de 2012

4.091 Palabras (17 Páginas)1.075 Visitas

Página 1 de 17

1. Optica Geométrica

La óptica geométrica se fundamenta en la teoría de los rayos de luz, la cual considera que cualquier objeto visible emite rayos rectos de luz en cada punto de él y en todas direcciones a su alrededor. Cuando estos rayos inciden sobre otros cuerpos pueden ser absorbidos, reflejados o desviados, pero si penetran en el ojo estimularan el sentido de la vista.

2. Propagación De La Luz

La luz se propaga en línea recta a una velocidad de 3*108 m/s en el vacío. Una demostración experimental de este principio es el hecho de que los cuerpos produzcan sombras bien definidas.

Un cuerpo opaco es aquel que no permite el paso de la luz a través de el; por lo tanto, si se recibe rayos luminosos, por lo que se ve con claridad cualquier objeto colocado al otro lado de el parabrisas de un auto; un cuerpo traslucido deja pasar la luz pero la difunde de tal manera que las cosas no pueden ser distinguidas claramente a través de ellos, como es el caso de una hoja de papel.

Intensidad luminosa y flujo luminoso

La fotometría es la parte de la óptica cuyo objetivo es determinar las intensidades de las fuentes luminosas y las iluminaciones de las superficies.

Al observar todas las cosas de nuestro alrededor, encontraremos que algunas de ellas emiten luz y otras las reflejan. A los cuerpos productores de luz, como el sol, una hoguera, o una vela, se les llama cuerpos luminosos o fuentes de luz. Los cuerpos que reciben rayos luminosos, como un árbol, unamesa, etc., se denominan cuerpos iluminados.

La intensidad luminosa es la cantidad de luz producida o emitida por un cuerpo luminoso. Para cuantificar la intensidad luminosa de una fuente de luz se utiliza la candela (cd) y la bujía decimal.

La canela equivale a 1/60 de la intensidad luminosa que emite 1cm2 de un cuerpo negro a la temperatura del punto de fusión del platino (1773°c).

Una bujía decimal equivale a la intensidad luminosa producida por una vela de 2cm de diámetro, cuya llama es de 5cm de altura.

Una intensidad luminosa de una candela equivale a una intensidad luminosa de una bujía decimal: 1 cd= 1 bd.

El flujo luminoso es la cantidad de energía luminosa que atraviesa en la unidad de tiempo una superficie normal (perpendicular) a los rayos de luz.

La unidad del flujo luminoso es el lumen (lm) . Un lumen es el flujo luminoso recibido durante un segundo por una superficie de 1m2 , limitado dentro de una esfera de radio y en cuyo centro se encuentra una fuente con intensidad luminosa de una candela.

Iluminación Y La Ley De La Iluminación

Una superficie esta iluminada cuando recibe una cierta cantidad de luz. Es muy importante para nuestra salud contar con una iluminación adecuada para según la actividad que vallamos a realizar; ejemplo, hacer ejercicio a luz del día por un lapso de tiempo no muy grande resulta bueno para el organismo, pero, leer con los rayos emitidos directamente por el sol es nocivo para la salud.

La iluminación es la cantidad de luz que reciben las superficies de los cuerpos. Su unidad de medida es el lux (lx).

Un lux es la iluminación producida por una candela o por una bujía decimal sobre una superficie de 1m2 que se encuentra a 1 metro de distancia

Un lux es la iluminación producida por una candela o por una bujía decimal sobre una superficie de 1m2 que se encuentra a 1 metro de distancia

1 lux = 1 cd = 1 bd

m2 m2

Por ejemplo un foco de 60 w equivale a 66 cd o bd, uno de 40 w, a 44 cd o bd, pues por cada watt hay una equivalencia de 1.1 bujías.

La ley de la iluminación, o ley inversa al cuadrado, es una consecuencia de la propagación en línea recta de la luz. Por ejemplo, al colocar un foco de 60 w a una distancia de un metro de la superficie de la mesa, se produce una cierta iluminación sobre ella; si después elevamos el foco a una distancia de 2 metro de la mesa, observaremos que la iluminación de la superficie de la mesa se ha reducido a la cuarta parte de la anterior; finalmente si triplicamos la distancia colocando el foco a 3 metros de la mesa, la iluminación que recibe equivale a la novena parte de la inicial, y por lo tanto podemos enunciar dicha ley de la sig. Manera: la iluminación. El que recibe una superficie es directamente proporcional al cuadrado de la distancia d que existe entre la fuente y la superficie; matemáticamente se expresa como:

E= I/d2

E= iluminación en lx

I= intensidad de la fuente luminosa en cd

d= distancia entre la fuente luminosa y la superficie en m

3. Leyes de reflexión de la luz

Cuando la luz llega a la superficie de un cuerpo, esta se refleja total o parcial mente en todas direcciones. Si la superficie es lisa como un espejo, los rayos son reflejados o rechazados en una sola dirección; toda superficie que refleja los rayos de luz recibe el nombre de espejo, por ejemplo el agua de una alberca o un lago, o los espejos de cristal que a su vez pueden ser planos o esféricos al rayo de luz que llega al espejo se le denomina incidente y al rayo rechazado por el se llama reflejado.

Las leyes de reflexión son:

1. - el rayo incidente, la normal y el rayo reflejado se encuentran en un mismo plano.

2. - el ángulo de incidencia es igual al ángulo de reflexión.

Cuando estamos frente a un espejo plano nuestra imagen es derecha porque conserva la misma posición; es virtual porque se ve como si estuviera dentro del espejo (la imagen real es la que se recibe en una pantalla), y es simétrica porque aparentemente esta a la misma distancia de la del espejo.

Espejos planos angulares

Se forman espejos planos angulares cuando se unen dos espejos planos por uno de sus lados formando un cierto ángulo. Al colocar un objeto entre ellos se observara un numero n de imágenes, que dependerá de la medida del ángulo; el numero de imágenes que se producirán entre dos espejos planos angulares se calcula con la siguiente ocasión.

N= 360°

a

Espejos Esfericos

Los espejos esféricos son casquetes de una esfera hueca, los cuales reflejan los rayos luminosos que inciden en ellos. Son cóncavos cuando la superficie reflectora es la parte interior, y convexos si la superficie reflectora es la parte exterior.

LA SUPOSICIÓN de que cada punto de un objeto luminoso o iluminado emite rayos rectos de luz en todas direcciones es la hipótesis principal de una teoría de la luz extraordinariamente fructífera que, hasta la fecha, se llama óptica geométrica (Figura 6). El nombre se debe a que en esta teoría la naturaleza de los rayos luminosos no se cuestiona; ni siquiera es importante. El propósito de la teoría es solamente entender, o predecir, lo que ocurre a los rayos emitidos por los objetos cuando son interceptados por diversos objetos opacos, como en la cámara oscura, o desviados de su camino recto de maneras que veremos enseguida. Como para esto solamente es necesario aplicar conocimientos de geometría a cada problema, el nombre de la teoría es óptica geométrica.

Figura 6. La hipótesis básica de la óptica después de Alhazán. Cada punto de un objeto luminoso emite rayos rectos de luz en todas direcciones.

Trazando sobre un esquema algunos sencillos rayos rectos se encuentran fácilmente las regiones de sombra producidas por un cuerpo opaco iluminado por cuerpos luminosos. Estas regiones se llaman, en general, la "sombra geométrica" del cuerpo. Por ejemplo, una esfera iluminada por un solo punto luminoso produce un solo cono de oscuridad total, llamado umbra, a donde no llega ningún rayo emitido por el punto luminoso (Figura 7 (a)). Este cono lo forman las tangentes a la esfera desde el punto luminoso. Fuera de él la luz llega a todas partes. Pero si la esfera opaca está iluminada por una esfera luminosa, además del cono de oscuridad total limitado ahora por las tangentes exteriores a las dos esferas, se produce una zona sólo parcialmente oscura a la que llega luz de algunas partes de la esfera luminosa. Esta zona se llama penumbra (casi sombra) y está limitada por la umbra y por el cono formado por las tangentes interiores a las esferas. Estas zonas se observan claramente durante los eclipses lunares. La Luna adquiere un color rojo cobrizo cuando está en la región de penumbra y se oscurece casi completamente en la región de umbra (Figura 7(b)).

Figura 7. La óptica geométrica explica la forma de la sombra producida por un cuerpo opaco. Esta región se llama sombra geométrica. En la figura (a) es el cono formado por las tangentes de la esfera. A esta zona no llega ningún rayo de luz; se llama "umbra". En la figura (b) la umbra es el cono formado por las tangentes exteriores a las dos esferas; fuera de ésta hay una zona donde llega luz, pero sólo de algunas partes del objeto luminoso. Esta región, llamada prenumbra, está incluida entre la umbra y el cono de las tangentes interiores a las dos esferas.

La cámara oscura es un ejemplo interesante de aplicación de la óptica geométrica. Si en un diagrama como el de la figura 8 trazamos las imágenes de un mismo objeto colocado a distintas distancias de la cámara, encontramos fácilmente que el tamaño de la imagen disminuye en la misma proporción que aumenta la distancia. Esto es, la relación del tamaño de la imagen con la distancia es la misma que en el caso del tamaño aparente en la teoría de los rayos táctiles. Esto sugiere que el ojo funciona como una cámara oscura. El orificio de la cámara es la pupila en el ojo; ese pequeño círculo negro colocado en el centro del iris. La cavidad formada por el globo del ojo no está vacía como

...

Descargar como (para miembros actualizados) txt (23 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com