Organos Internos
6 de Abril de 2015
365 Palabras (2 Páginas)236 Visitas
Existen varios métodos para resolver las ecuaciones cuadráticas. El método apropiado para resolver una ecuación cuadrática depende del tipo de ecuación cuadrática que se va a resolver.
Métodos: factorización, raíz cuadrada y la fórmula cuadrática.
Factorización: Para utilizar este método la ecuación cuadrática debe estar igualada a cero. Luego expresar el lado que no es cero como un producto de factores. Finalmente se iguala a cero cada factor y se despeja para la variable.
Ejemplos para discusión:
1) x2 – 4x = 0
2) x2 – 4x = 12
3) 12x2 – 17x + 6 = 0
Ejemplo:
9x2 + 6x + 10 a = 9, b = 6, c = 10
3x2 - 9x a = 3, b = -9, c = 0
-6x 2 + 10 a = -6, b = 0, c = 10
Ejemplos
1) Resolver
(x + 3)(2x − 1) = 9
Lo primero es igualar la ecuación a cero.
Para hacerlo, multiplicamos los binomios:
Ahora, pasamos el 9, con signo contrario, al primer miembro para igualar a cero:
Ahora podemos factorizar esta ecuación:
(2x − 3)(x + 4) = 0
Ahora podemos igualar a cero cada término del producto para resolver las incógnitas:
Si
2x − 3 = 0
2x = 3
Si
x + 4 = 0
x = −4
Esta misma ecuación pudo haberse presentado de varias formas:
(x + 3)(2x − 1) = 9
2x2 + 5x − 12 = 0
2x2 + 5x = 12
2x2 − 12 = − 5x
En todos los casos la solución por factorización es la misma:
2) Halle las soluciones de
La ecuación ya está igualada a cero y solo hay que factorizar e igualar sus factores a cero y luego resolver en términos de x:
Ahora, si
x = 0
o si
x− 4 = 0
x = 4
Nota: No podemos resolver todas las ecuaciones cuadráticas por factorización porque este método está limitado a coeficientes enteros. Por eso tenemos que conocer otros métodos.
Raíz cuadrada: Este método require el uso de la propiedad que se menciona a continuación.
...