ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Turbinas


Enviado por   •  23 de Julio de 2014  •  Tesis  •  3.069 Palabras (13 Páginas)  •  210 Visitas

Página 1 de 13

FUNCIONAMIENTO I EXPLICACIÓN

Turbina,

Motor rotativo que convierte en energía mecánica la energía de una corriente de agua, vapor de agua o gas. El elemento básico de la turbina es la rueda o rotor, que cuenta con palas, hélices, cuchillas o cubos colocados alrededor de su circunferencia, de tal forma que el fluido en movimiento produce una fuerza tangencial que impulsa la rueda y la hace girar. Esta energía mecánica se transfiere a través de un eje para proporcionar el movimiento de una máquina, un compresor, un generador eléctrico o una hélice. Las turbinas se clasifican en turbinas hidráulicas o de agua, turbinas de vapor y turbinas de combustión. Hoy la mayor parte de la energía eléctrica mundial se produce utilizando generadores movidos por turbinas. Los molinos de viento que producen energía eléctrica se llaman turbinas de viento.

Turbinas hidráulicas

El tipo más antiguo y más simple de turbina hidráulica es la rueda hidráulica, utilizada por primera vez en Grecia y utilizada durante la antigüedad y la edad media para moler cereales. Consistía en un eje vertical con un conjunto de aspas o palas radiales situadas en una corriente de agua a gran velocidad. La potencia de la rueda era de unos 0,5 caballos de vapor (CV). La rueda hidráulica horizontal (o sea, un eje horizontal conectado a una rueda de palas vertical), descrita por primera vez por el arquitecto e ingeniero romano Vitrubio en el siglo I a.C., tenía el segmento inferior de la rueda de palas insertada en la corriente, y actuaba como una rueda hidráulica de empuje inferior.

Hacia el siglo II d.C. se empezó a utilizar en las regiones montañosas la rueda hidráulica de empuje superior. En este caso, el agua se vertía sobre las palas desde arriba, y se obtenía energía adicional de la inercia del agua en su caída. En la edad media la potencia máxima de la rueda, fabricada con madera, aumentó de 3 a 50 CV.

La transición de la rueda hidráulica a la turbina es sobre todo semántica. El primer intento de formular la base teórica para el diseño de ruedas hidráulicas en el siglo XVIII corresponde al ingeniero civil británico John Smeaton, que demostró que la rueda de empuje superior era más eficaz. Sin embargo, el ingeniero militar francés Jean Victor Poncelet diseñó una rueda de empuje inferior cuyas palas curvadas aumentaban el rendimiento casi un 70%. El uso de esta máquina se extendió rápidamente. Otro ingeniero militar francés, Claude Burdin, inventó el término turbina, como parte de un análisis teórico en que se daba una gran importancia a la velocidad de rotación. Benoit Fourneyron, un alumno de Burdin en la Escuela de Minería de Saint Étienne, diseñó y construyó ruedas que alcanzaban velocidades de rotación de 60 rpm (revoluciones por minuto) o más y que proporcionaban hasta 50 CV en las factorías metalúrgicas francesas. Por último, Fourneyron construyó turbinas que trabajaban a 2.300 rpm, desarrollando 60 CV y un rendimiento de más del 80%.

A pesar de esta eficiencia excepcional, la turbina de Fourneyron tenía algunos inconvenientes causados por el flujo centrífugo del agua que la atravesaba. Esto provocaba problemas si se reducía el flujo de agua o su carga. El ingeniero estadounidense nacido en Gran Bretaña James B. Francis diseñó una turbina en la que el flujo se producía hacia el interior. La llamada turbina de reacción o turbina Francis se convirtió en la turbina hidráulica más utilizada con presiones de agua, o alturas de caída, equivalentes a una columna de agua de 10 a 100 m. Este tipo de turbina funciona debido a la expansión del agua mientras fluye a través de los espacios entre las palas, lo que produce una fuerza neta, o reacción, con un componente tangencial que pone la rueda en movimiento.

La rueda Pelton, cuyo nombre proviene del ingeniero estadounidense Lester Allen Pelton, se empezó a aplicar durante la segunda mitad del siglo XIX, en instalaciones donde la presión del agua era equivalente a una columna de agua de entre 90 y 900 m. En este tipo de turbinas el agua se conduce desde un depósito a gran altura a través de un canal o una conducción forzada hasta una boquilla eyectora que convierte la energía cinética del agua en un chorro a presión. Dado que la acción de la rueda Pelton depende del impulso del chorro sobre ella, en lugar de la reacción del agua en expansión, este tipo de turbina se denomina también turbina de acción.

El aumento de las necesidades de energía hidroeléctrica durante los albores del siglo XX puso de manifiesto la necesidad de turbinas que pudieran aprovechar caídas de agua de 3 a 9 m, que podrían utilizarse en muchos ríos construyendo pequeños embalses de agua. En 1913, el ingeniero austriaco Viktor Kaplan planteó por primera vez la turbina de hélice, que actúa al contrario que la hélice de un barco. Kaplan mejoró la turbina haciendo que las palas pudieran pivotar sobre su eje. Los distintos ángulos de las palas aumentaban el rendimiento ajustando el ángulo al volumen de la caída de agua.

Para mantener una salida constante de voltaje en una instalación hidroeléctrica la velocidad de la turbina debe mantenerse constante, independientemente de las variaciones de la presión del agua que las mueve. Esto requiere gran número de controles que, tanto en la turbina de Francis como en la de Kaplan, varían el ángulo de las palas. En las instalaciones de ruedas Pelton, el flujo del agua se controla abriendo y cerrando las boquillas eyectoras. En este caso, se utiliza una boquilla de derivación de descarga, dado que los cambios rápidos de corriente en canales de caída largos podrían producir aumentos repentinos en la presión, llamados martillos de agua, que pueden ser muy dañinos. Con estos ajustes, se mantiene constante el flujo de agua a través de las boquillas. Para ello se cierran las boquillas de descarga, lo que se hace con mucha lentitud para evitar martillos de agua.

Turbinas de vapor

El éxito obtenido con las turbinas de agua condujo a utilizar el principio de la turbina para extraer energía del vapor de agua. Mientras que la máquina de vapor de vaivén desarrollada por Watt utilizaba la presión del vapor, la turbina consigue mejores rendimientos al utilizar también la energía cinética de éste. La turbina puede ser más pequeña, más ligera y más barata que una máquina de vapor de vaivén de la misma potencia, y puede ser de un tamaño mucho mayor que las máquinas de vapor convencionales. Desde el punto de vista de la mecánica, tiene la ventaja de producir directamente un movimiento giratorio sin necesidad de una manivela o algún otro medio de convertir la energía de vaivén en energía rotatoria. Como resultado de ello,

...

Descargar como (para miembros actualizados)  txt (18.2 Kb)  
Leer 12 páginas más »
Disponible sólo en Clubensayos.com