Turbinas A Gas
ijdpedobear19 de Noviembre de 2014
7.018 Palabras (29 Páginas)290 Visitas
1.1 Objetivos:
• Conocer los elementos de una turbina a gas, ver su funcionamiento y su importancia.
• Demostrar la utilidad de las turbinas a gas en la industria.
• Entender el funcionamiento de una turbina a gas.
• Conocer como es la aplicación de dichas turbinas en las plantas energéticas.
• Conocer la diferencia entre una turbina a gas y una a vapor.
1.2 Aplicaciones de la turbina a gas:
Aviación militar: Para helicópteros, aviones de combate o caza bombarderos, aviones de despegue vertical (Harrier V/tol y V/stol). En este caso se buscan turbinas con temperaturas de admisión más elevada para lograr más altas velocidades y despegues verticales.
Aviación comercial: Se utilizan aviones de turbina de chorro (turbo-jet) y de turbina de hélice (turbo-fan). En las aerolíneas de carga se emplean turbinas de gran potencia.
Tuberías para transmisión de gas: Es de las industrias que más utilizan turbinas de gas. Las turbinas de gas han sido instaladas para impulsar compresores en medidas superiores a 22500 KW (300 HP). Esta es una aplicación excelente ya que el gas natural es un combustible ideal y se requiere una gran cantidad de fuerza motriz.
Transporte: En barcos, la alta potencia específica de las turbinas de gas permite realizar diseños de altas velocidades. Esto es muy útil para barcos tipo containers, botes moto-torpedo y grandes barcos de guerra. También se usan en ferrocarriles, en locomotoras de carga y trenes ligeros de pasajeros, pero solo en los últimos ha representado un cambio significativo.
Aeromodelismo: Actualmente se construyen pequeñas turbinas de gas que impulsan aeromodelos a control remoto. Estas se han vuelto las favoritas de los seguidores de este hobby ya que le brindan al modelo una gran velocidad y potencia, mejorando su rendimiento y versatilidad.
Generación eléctrica: Las compañías de servicios eléctricos las utilizan para cargas pico de trabajo en primer lugar. Los costos de instalación y operación, siempre que se usen combustibles refinados, son favorables para trabajos intermitentes. Los motores de aviación adaptados para este servicio disponen de un rápido arranque, aproximadamente dos minutos para arrancar a plena carga. Se han instalado plantas de potencia a carga pico arriba de 150 MW con un solo generador.
2.0 Historia y Evolución de la Turbina de Gas:
Hoy en día, el diseño de turbina de gas que se ha impuesto está basado en un compresor axial multietápico, una cámara de combustión interna y una turbina de expansión, todo ello construido de una forma bastante compacta que da idea de un equipo unitario. Pero al diseño de turbina predominante en la actualidad se ha llegado después de una larga evolución desarrollada a lo largo del siglo XX, principalmente.
La primera referencia al fenómeno en que se basa la turbina hay que buscarla en el año 150 A.C de manos del filósofo egipcio Hero, que ideó un pequeño juguete llamado Eolipilo, que giraba a partir del vapor generado en una pequeña caldera. El juguete era una pura elucubración mental, pues no se tiene constancia de que jamás fuera construido.
En 1687 Isaac Newton anuncia sus leyes del movimiento. Entre ellas, la tercera ley anunciaba que existe un equilibrio entre acción y reacción: «para cada acción habrá una reacción de la misma fuerza e intensidad pero de sentido opuesto». Cuando las fuerzas se equilibran, son iguales en todas las direcciones. Pero al pinchar el globo o soltar la boquilla ocurre una acción que desequilibra el sistema.
La primera turbina de gas realmente construida fue concebida por J.F. Stolze en 1872 a partir de una patente de Fernlhougs, y construida realmente entre 1900 y 1904.
Constaba de un compresor axial multietápico, un intercambiador de calor que precalentaba el aire antes de entrar en la cámara de combustión, utilizando los gases de escape de la turbina para este fin, y una turbina de expansión multietápico. A pesar de lo genial del diseño, el poco éxito fue debido al bajo rendimiento tanto del compresor como de la turbina, por las bajas relaciones de compresión y la baja temperatura máxima alcanzada en función de los materiales disponibles en la época.
La relación de compresión era sin duda uno de los retos a superar para el desarrollo de las turbinas, pues mientras no se consiguieran compresores eficaces era imposible desarrollar turbinas con rendimientos que permitieran su desarrollo. Los primeros turbocompresores axiales de rendimiento aceptable aparecen en 1926, A. A. Griffith establece los principios básicos de su teoría del perfil aerodinámico para el diseño de compresores y turbinas, y es a partir de aquí cuando se emprende el desarrollo de los compresores axiales. La teoría del perfil aerodinámico expuesta por Griffith es sin duda un importante hito en el desarrollo de las turbinas de gas tal y como las conocemos hoy en día, y gracias a los conocimientos desarrollados por Griffith se consiguió desarrollar compresores y turbinas de alto rendimiento.
Hasta 1937 todos los desarrollos de turbinas de gas tenían una finalidad industrial, y no conseguían competir con los motores alternativos a pistón, debido siempre a su bajo rendimiento máximo (20%). Pero sus características de bajo peso y pequeño volumen hicieron que un poco antes del inicio de la segunda guerra mundial comenzara el desarrollo de turbinas para uso aeronáutico. Así, Whittle en Gran Bretaña en 1930 concibió y patentó el uso de un reactor como medio de propulsión. Alemania, por su parte, también desarrolló en paralelo su primer motor a reacción para aviación. En 1939 Heinkel hizo volar el primer avión utilizando un motor a reacción de gas. No obstante, con las mayores velocidades alcanzables aparecieron nuevos problemas aerodinámicos que tuvieron que ir solucionándose. Hasta el final de la guerra (1944-1945) no se consiguió que un avión propulsado consiguiera volar de forma eficiente.
Este uso masivo del motor de reacción unido a los nuevos conocimientos de aerodinámica permitió el desarrollo de turbo máquinas con alto rendimiento. De esta forma, a partir de los años 60 el uso del reactor se generalizó y en la década de los 70 prácticamente toda la aviación de gran potencia era impulsada por turbinas.
El desarrollo de la turbina de gas ha tenido históricamente, pues, tres obstáculos que han dificultado y ralentizado su desarrollo:
La relación de compresión del compresor y su rendimiento.
La resistencia de los materiales para poder usar altas temperaturas en la cámara de combustión y en las primeras etapas de la turbina.
En menor medida, la dificultad para controlar todo el sistema de forma manual.
El desarrollo de la turbina de gas sólo ha sido posible tras desarrollar un compresor axial a partir de la mejora de conceptos aerodinámicos, que han permitido altas relaciones de compresión. El segundo de los pilares ha sido la innovación tecnológica en el campo de los materiales, con el desarrollo de nuevas aleaciones monocristales y recubrimientos cerámicos. Esto, unido a un profundo estudio de la refrigeración interior del alabe ha permitido alcanzar temperaturas muy altas tanto en cámara de combustión como en las primeras ruedas de álabes.
La tercera de las claves ha sido el desarrollo de la informática. El empleo de ordenadores ha permitido por un lado poder simular determinadas condiciones y comportamientos, para así mejorar los diseños. Por otro, ha permitido desarrollar sistemas de control que permiten de forma muy sencilla para el operador arrancar, parar y vigilar los principales parámetros de operación de la máquina minuto a minuto, y además pueden diagnosticar el estado técnico del equipo y predecir futuros fallos.
En la década de los 70 se intensificó el uso de turbinas para generación de electricidad. Así, en 1974 se construyó la primera instalación de 50 MW. En España, la primera turbina de gas de gran tamaño (260 MW) se puso en marcha en el año 2002, arrancando la era de las centrales térmicas de ciclo combinado que ya había comenzado hacía tiempo en otros países.
2.1 Partes de una turbina:
Principales Partes Turbinas
Las turbinas de gas pueden dividirse en cuatro grandes partes principales:
Compresor
Cámara de combustión
Turbina de expansión
Carcasa
Además cuenta con una seria de sistemas auxiliares necesarios para su funcionamiento, como son la casa de filtros, cojinetes, sistema de lubricación, recinto acústico, bancada, virador, etc.
Compresor:
Su función consiste en comprimir el aire de admisión, hasta la presión indicada para cada turbina, para introducirla en la cámara de combustión. Su diseño es principalmente axial y necesita un gran número de etapas, alrededor de 20 para una razón de compresión de 1:30, comparada con la turbina de expansión.
Su funcionamiento consiste en empujar el aire a través de cada etapa de alabes por un estrechamiento cada vez mayor, al trabajar en contra presión es un proceso que consume mucha energía, llegando a significar hasta el 60% de la energía producida por la turbina. Para disminuir la potencia
...