CONTAMINACION
RAGCH3 de Mayo de 2012
5.921 Palabras (24 Páginas)388 Visitas
ACEITES PARA ENGRANAJES
En cuanto al aceite para engranajes o aceite para transmisiones, la clasificación S.A.E. se basa en la viscosidad, estableciendo cinco números S.A.E.
Grado SAE Viscosidad Cinemática
cSt @ 100°C
70W----------4,1
75W----------4,1
80W----------7,0
85W----------11,0
90------------13,5
140-----------24,0
250-----------41,0
La clasificación A.P.I. actual contiene seis designaciones, estableciendo la calidad para un servicio especifico.
API-GL-1: Servicio característico de ejes con engranajes cónicos o helicoidales y transmisiones manuales en condiciones suaves que pueden trabajar con aceite mineral puro refinado. Pueden llevar aditivos antioxidantes, Antiherrumbre, antiespumantes y depresores del punto de congelación.
API-GL-2: Servicio característico de ejes con engranajes cónicos que trabajan en condiciones de carga, temperatura y velocidad superiores al API-GL-1.
API-GL-3: Servicio típico de transmisiones manuales y ejes con engranajes cónicos, en condiciones moderadamente severas de velocidad y carga.
API-GL-4: Servicio característico de engranajes, particularmente hipoides, trabajando a alta velocidad a carga baja, y baja velocidad con cargas elevadas. Protegen contra el rayado las superficies en contacto.
API-GL-5: Servicio típico de engranajes hipoides trabajando a alta velocidad, carga de choque; alta velocidad a baja carga y baja velocidad con cargas elevadas. Aseguran mejor protección de las superficies en contacto que el servicio API-GL-4.
API-GL-6: Servicio característico de engranajes, específicamente los hipoides con deslizamiento limitado en condiciones de alta velocidad con altas cargas y rendimientos. Su utilización es típica en diferenciales en los que es frecuente el uso del sistema de bloqueo de ambos palieres. Protegen de manera optima contra el rayado de superficies.
Publicadas por Cesar Augusto Mestre Galvis 0 comentarios
ACEITES HIDRAULICOS
Los aceites hidráulicos son líquidos transmisores de potencia que se utilizan para transformar, controlar y transmitir los esfuerzos mecánicos a través de una variación de presión o de flujo.
FUNCIONES
1.Transmitir la potencia de un punto a otro.
2.Realizar el cierre entre piezas móviles reduciendo fricciones y desgastes.
3.Lubricar y proteger contra herrumbre o corrosión las piezas del sistema.
4.No sufrir cambio físico o químico o el menor posible.
5.Suministrar protección contra el desgaste mecánico.
PARÁMETROS MÁS IMPORTANTES
Temperatura de funcionamiento.
Influyen sobre las propiedades físicas y químicas del fluido. Las altas temperaturas condicionan la vida útil del fluido, su resistencia de película, su viscosidad, etc. La temperatura baja puede presentar problemas debidos a dificultades en el bombeo. En transmisiones que trabajen al exterior pueden presentarse variaciones de -15ºC a +45ºC.
Viscosidad.
Afecta a las propiedades de fricción del fluido, el funcionamiento de la bomba, la cavitación, el consumo de energía y la capacidad de control del sistema.
Compatibilidad.
Tiene gran importancia la compatibilidad del fluido con los metales, con las juntas de cierre, etc. También es esencial que el fluido ejerza una protección contra la corrosión de los metales, siendo el cobre uno de los menos deseables para los sistemas hidráulicos por su poder catalizador.
Estabilidad.
La estabilidad térmica e hidrolítica y la resistencia a la oxidación son de gran interés para la vida útil tanto del fluido como del equipo.
Velocidad de respuesta.
De ésta depende la precisión de movimientos de los mecanismos dirigidos y depende de la viscosidad del fluido y sus características de compresibilidad. La presencia de aire hace disminuir esta velocidad y puede originar cavitaciones.
Resistencia de película y presión.
Esta es una propiedad muy compleja que está relacionada con su capacidad para disminuir la fricción y el desgaste. La presión es un factor esencial tanto para el rendimiento del fluido como para la vida del equipo, por ello es necesario que para obtener una gran precisión en los movimientos el fluido tenga una compresibilidad la más baja posible.
La consideración de todos estos parámetros, permite definir las principales propiedades que deberá presentar un fluido que sea adecuado para su utilización en transmisiones hidráulicas.
PRINCIPALES PROPIEDADES DE LOS FLUIDOS HIDRÁULICOS
•Viscosidad apropiada.
•Variación mínima de viscosidad con la temperatura.
•Estabilidad frente al cizallamiento.
•Baja compresibilidad.
•Buen poder lubricante.
•Inerte frente a los materiales de juntas y tubos.
•Buena resistencia a la oxidación.
•Estabilidad térmica e hidrolítica.
•Características anticorrosivas.
•Propiedades antiespumantes.
•Buena demulsibilidad.
•Ausencia de acción nociva.
El grado de aceite hidráulico más conveniente para maquinaria debe ser 10W, además de obedecer a la designación A.P.I. CC/SF.
Publicadas por Cesar Augusto Mestre Galvis 0 comentarios
GRASAS LUBRICANTES
DEFINICIÓN
No hay en el mundo máquina alguna por sencilla que sea no requiera lubricación, ya que con esta se mejora tanto el funcionamiento, como la vida útil de los equipos y maquinarias.
¿Qué es la grasa lubricante?
Se define a la grasa lubricante como una dispersión semilíquida a sólida de un agente espesante en un líquido (aceite base). Consiste en una mezcla de aceite mineral o sintético (85-90%) y un espesante. Al menos en el 90% de las grasa, el espesante es un jabón metálico, formado cuando un metal hidróxido reacciona con un ácido graso. Un ejemplo es el estearato de litio (jabón de litio).
Cuando la grasa tiene que contener propiedades especiales, se incluyen otros constituyentes que actúen como inhibidores de la oxidación y mejoren la resistencia de la película Existe otro tipo de aditivo: los estabilizadores. Cambiando el jabón, aceite o aditivo, se pueden producir diferentes calidades de grasas por una amplia gama de aplicaciones.
TIPOS DE LUBRICACIÓN
Película lubricante
La película del lubricante debe ser lo suficientemente gruesa como para separar los componentes del mecanismo. El espesor necesario de película depende de la rugosidad superficial, la existencia de partículas de suciedad y la duración requerida.
También depende de la viscosidad del medio y de las condiciones de funcionamiento, particularmente de la temperatura, velocidad de rotación y, en cierta forma, de la carga. Se pueden distinguir tres situaciones diferentes de lubricación: capa límite, lubricación hidrodinámica y lubricación elasto-hidrodinámica.
Lubricación por capa límite
Se obtiene lubricación por capa límite cuando el espesor de la película del lubricante es de una magnitud similar a las moléculas individuales de aceite. Esta condición se presenta cuando la cantidad de lubricante es insuficiente, o el movimiento relativo entre las dos superficies es demasiado lento. El coeficiente de rozamiento μ en este caso es alto, tan alto como 0.1, y sobre el incipiente contacto metálico puede alcanzar 0.5.
Cuando el coeficiente aumenta (esto es, la resistencia aumenta), las pérdidas por rozamiento también aumentan. Estas se convierten en calor, aumentando la temperatura del lubricante y reduciéndose su viscosidad de forma que la capacidad de carga de la película se reduce (el caso peor es cuando se reduce tanto que el contacto metálico se produce). Ello se puede evitar empleando aditivos que refuercen la resistencia de la película.
Lubricación hidrodinámica
La lubricación hidrodinámica o lubricación de película gruesa, se obtiene cuando las dos superficies están completamente separadas por una película coherente del lubricante. El espesor de la película excede así de las irregularidades combinadas de las superficies. El coeficiente del rozamiento es bastante menor que en la lubricación por capa límite, y en ciertos casos puede llegar a 0.005. La lubricación hidrodinámica evita el desgaste de las partes en movimiento, ya que no hay contacto metálico entre ellas.
Lubricación elasto-hidrodinámica
Esta condición se obtiene en superficies en contacto fuertemente cargadas (elásticas), esto es, superficies que cambian su forma bajo una carga fuerte, y vuelven a su forma original cuando cesa la carga.
DIFERENCIAS ENTRE GRASAS Y ACEITES
Cuando dos cuerpos sólidos se frotan entre sí, hay una considerable resistencia al movimiento sin importar lo cuidadosamente que las superficies se hayan maquinado y pulido. La resistencia se debe a la acción abrasiva de las aristas y salientes microscópicas y la energía necesaria para superar esta fricción se disipa en forma de calor o como desgaste de las partes móviles. Históricamente, el primer lubricante fue el sebo. Se utilizaba para engrasar las ruedas de los carros romanos ya en el año 1400 a.C. En la actualidad los lubricantes suelen clasificarse en grasas y aceites. Estas dos clases de lubricantes aparecieron teniendo en cuenta factores tales como velocidades de operación, temperaturas, cargas, contaminantes en el medio ambiente, tolerancias entre las piezas a lubricar, períodos de lubricación y tipos de mecanismos; Existen diferentes grados de grasas y aceites dependiendo
...