ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Optica

jonaspattinsonEnsayo29 de Mayo de 2014

4.002 Palabras (17 Páginas)229 Visitas

Página 1 de 17

Óptica

Rama de la física que se ocupa de la propagación y el comportamiento de la luz. En un sentido amplio, la luz es la zona del espectro de radiación electromagnética que se extiende desde los rayos X hasta las microondas, e incluye la energía radiante que produce la sensación de visión. El estudio de la óptica se divide en dos ramas, la óptica geométrica y la óptica física.

Óptica Geométrica

Este campo de la óptica se ocupa de la aplicación de las leyes de reflexión y refracción de la luz al diseño de lentes y otros componentes de instrumentos ópticos.

Reflexión y Refracción

Si un rayo de luz que se propaga a través de un medio homogéneo incide sobre la superficie de un segundo medio homogéneo, parte de la luz es reflejada y parte entra como rayo refractado en el segundo medio, donde puede o no ser absorbido. La cantidad de luz reflejada depende de la relación entre los índices de refracción de ambos medios. El plano de incidencia se define como el plano formado por el rayo incidente y la normal (es decir, la línea perpendicular a la superficie del medio) en el punto de incidencia. El ángulo de incidencia es el ángulo entre el rayo incidente y la normal. Los ángulos de reflexión y refracción se definen de modo análogo.

Las leyes de la reflexión afirman que el ángulo de incidencia es igual al ángulo de reflexión, y que el rayo incidente, el rayo reflejado y la normal en el punto de incidencia se encuentran en un mismo plano. Si la superficie del segundo medio es lisa, puede actuar como un espejo y producir una imagen reflejada.

Si la superficie del segundo medio es rugosa, las normales a los distintos puntos de la superficie se encuentran en direcciones aleatorias. En ese caso, los rayos que se encuentren en el mismo plano al salir de una fuente puntual de luz tendrán un plano de incidencia, y por tanto de reflexión, aleatorio. Esto hace que se dispersen y no puedan formar una imagen.

Ley de Snell

Esta importante ley, llamada así en honor del matemático holandés Willebrord van Roijen Snell, afirma que el producto del índice de refracción del primer medio y el seno del ángulo de incidencia de un rayo es igual al producto del índice de refracción del segundo medio y el seno del ángulo de refracción. El rayo incidente, el rayo refractado y la normal a la superficie de separación de los medios en el punto de incidencia están en un mismo plano.

En general, el índice de refracción de una sustancia transparente más densa es mayor que el de un material menos denso, es decir, la velocidad de la luz es menor en la sustancia de mayor densidad. Por tanto, si un rayo incide de forma oblicua sobre un medio con un índice de refracción mayor, se desviará hacia la normal, mientras que si incide sobre un medio con un índice de refracción menor, se desviará alejándose de ella. Los rayos que inciden en la dirección de la normal son reflejados y refractados en esa misma dirección.

Para un observador situado en un medio menos denso, como el aire, un objeto situado en un medio más denso parece estar más cerca de la superficie de separación de lo que está en realidad.

Prismas

Cuando la luz atraviesa un prisma (un objeto transparente con superficies planas y pulidas no paralelas), el rayo de salida ya no es paralelo al rayo incidente. Como el índice de refracción de una sustancia varía según la longitud de onda, un prisma puede separar las diferentes longitudes de onda contenidas en un haz incidente y formar un espectro.

Puede demostrarse que cuando el ángulo de incidencia es igual al ángulo formado por el rayo emergente, la desviación es mínima. El índice de refracción de un prisma puede calcularse midiendo el ángulo de desviación mínima y el ángulo que forman las caras del prisma.

Ángulo crítico

Puesto que los rayos se alejan de la normal cuando entran en un medio menos denso, y la desviación de la normal aumenta a medida que aumenta el ángulo de incidencia, hay un determinado ángulo de incidencia, denominado ángulo crítico o ángulo límite, para el que el rayo refractado forma un ángulo de 90º con la normal, por lo que avanza justo a lo largo de la superficie de separación entre ambos medios.

Si el ángulo de incidencia se hace mayor que el ángulo crítico, los rayos de luz serán totalmente reflejados. La reflexión total no puede producirse cuando la luz pasa de un medio menos denso a otro más denso. Las tres ilustraciones de la figura 6 muestran la refracción ordinaria, la refracción en el ángulo crítico y la reflexión total.

La fibra óptica es una nueva aplicación práctica de la reflexión total. Cuando la luz entra por un extremo de un tubo macizo de vidrio o plástico, puede verse reflejada totalmente en la superficie exterior del tubo y, después de una serie de reflexiones totales sucesivas, salir por el otro extremo.

Es posible fabricar fibras de vidrio de diámetro muy pequeño, recubrirlas con un material de índice de refracción menor y juntarlas en haces flexibles o placas rígidas que se utilizan para transmitir imágenes. Los haces flexibles, que pueden emplearse para iluminar además de para transmitir imágenes, son muy útiles para la exploración médica, ya que pueden introducirse en cavidades estrechas e incluso en vasos sanguíneos.

Superficies esféricas y asféricas

La mayor parte de la terminología tradicional de la óptica geométrica se desarrolló en relación con superficies esféricas de reflexión y refracción. Sin embargo, a veces se consideran superficies no esféricas o asféricas. El eje óptico es una línea de referencia que constituye un eje de simetría, y pasa por el centro de una lente o espejo esféricos y por su centro de curvatura.

Si un haz de rayos estrecho que se propaga en la dirección del eje óptico incide sobre la superficie esférica de un espejo o una lente delgada, los rayos se reflejan o refractan de forma que se cortan, o parecen cortarse, en un punto situado sobre el eje óptico. La distancia entre ese punto (llamado foco) y el espejo o lente se denomina distancia focal.

Cuando una lente es gruesa, los cálculos se realizan refiriéndolos a unos planos denominados planos principales, y no a la superficie real de la lente. Si las dos superficies de una lente no son iguales, ésta puede tener dos distancias focales, según cuál sea la superficie sobre la que incide la luz.

Cuando un objeto está situado en el foco, los rayos que salen de él serán paralelos al eje óptico después de ser reflejados o refractados. Si una lente o espejo hace converger los rayos de forma que se corten delante de dicha lente o espejo, la imagen será real e invertida.

Si los rayos divergen después de la reflexión o refracción de modo que parecen venir de un punto por el que no han pasado realmente, la imagen no está invertida y se denomina imagen virtual. La relación entre la altura de la imagen y la altura del objeto se denomina aumento lateral.

La distancia focal de un espejo esférico es igual a la mitad de su radio de curvatura. Si el objeto está situado entre la superficie del espejo y su foco, la imagen es virtual, aumentada y no invertida. Un espejo convexo sólo forma imágenes virtuales, reducidas y no invertidas, a no ser que se utilice junto con otros componentes ópticos.

Lentes

Las lentes con superficies de radios de curvatura pequeños tienen distancias focales cortas. Una lente con dos superficies convexas siempre refractará los rayos paralelos al eje óptico de forma que converjan en un foco situado en el lado de la lente opuesto al objeto.

Una superficie de lente cóncava desvía los rayos incidentes paralelos al eje de forma divergente; a no ser que la segunda superficie sea convexa y tenga una curvatura mayor que la primera, los rayos divergen al salir de la lente, y parecen provenir de un punto situado en el mismo lado de la lente que el objeto. Estas lentes sólo forman imágenes virtuales, reducidas y no invertidas.

Si la distancia del objeto es mayor que la distancia focal, una lente convergente forma una imagen real e invertida. Si el objeto está lo bastante alejado, la imagen será más pequeña que el objeto.

Si la distancia del objeto es menor que la distancia focal de la lente, la imagen será virtual, mayor que el objeto y no invertida. En ese caso, el observador estará utilizando la lente como una lupa o microscopio simple. El ángulo que forma en el ojo esta imagen virtual aumentada (es decir, su dimensión angular aparente) es mayor que el ángulo que formaría el objeto si se encontrara a la distancia normal de visión. La relación de estos dos ángulos es la potencia de aumento de la lente.

Una lente con una distancia focal más corta crearía una imagen virtual que formaría un ángulo mayor, por lo que su potencia de aumento sería mayor. La potencia de aumento de un sistema óptico indica cuánto parece acercar el objeto al ojo, y es diferente del aumento lateral de una cámara o telescopio, por ejemplo, donde la relación entre las dimensiones reales de la imagen real y las del objeto aumenta según aumenta la distancia focal

La cantidad de luz que puede admitir una lente aumenta con su diámetro. Como la superficie que ocupa una imagen es proporcional al cuadrado de la distancia focal de la lente, la intensidad luminosa de la superficie de la imagen es directamente proporcional al diámetro de la lente e inversamente proporcional al cuadrado de la distancia focal.

Por ejemplo, la imagen producida por una lente de 3 cm de diámetro y una distancia focal de 20 cm sería cuatro veces menos luminosa que la formada por una

...

Descargar como (para miembros actualizados) txt (24 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com