ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Transformadores

trinaq5 de Mayo de 2013

8.715 Palabras (35 Páginas)284 Visitas

Página 1 de 35

UNIVERSIDAD NACIONAL EXPERIMENTAL

“FRANCISCO DE MIRANDA”

ÁREA DE TECNOLOGÍA

PROGRAMA DE INGENIERÍA MECANICA

ELECTROTÉCNIA

PROF.:

INTRODUCCIÓN

EL TRANSFORMADOR

La invención del transformador, data del año de 1884 para ser aplicado en los sistemas de transmisión que en esa época eran de corriente directa y presentaban limitaciones técnicas y económicas. El primer sistema comercial de corriente alterna con fines de distribución de la energía eléctrica que usaba transformadores, se puso en operación en los Estados Unidos de América. En el año de 1886 en Great Barington, Mass., en ese mismo año, al protección eléctrica se transmitió a 2000 volts en corriente alterna a una distancia de 30 kilómetros, en una línea construida en Cerchi, Italia. A partir de esta pequeñas aplicaciones iniciales, la industria eléctrica en el mundo, ha recorrido en tal forma, que en la actualidad es factor de desarrollo de los pueblos, formando parte importante en esta industria el transformador.

El transformador, es un dispositivo que no tiene partes móviles, el cual transfiere la energía eléctrica de un circuito u otro bajo el principio de inducción electromagnética. La transferencia de energía la hace por lo general con cambios en los valores de voltajes y corrientes.

Un transformador elevador recibe la potencia eléctrica a un valor de voltaje y la entrega a un valor más elevado, en tanto que un transformador reductor recibe la potencia a un valor alto de voltaje y a la entrega a un valor bajo.

Principio de funcionamiento del transformador.

El principio de funcionamiento del transformador, se puede explicar por medio del llamado transformador ideal monofásico, es decir, una máquina que se alimenta por medio de una corriente alterna monofásica.

A reserva de estudios con mayor detalle, la construcción del transformador, sustancialmente se puede decir que un transformador está constituido por un núcleo de material magnético que forma un circuito magnético cerrado, y sobre de cuyas columnas o piernas se localizandos devanados, uno denominado “primario” que recibe la energía y el otro el secundario, que se cierra sobre un circuito de utilización al cual entrega la energía. Los dos devanados se encuentran eléctricamente asilado entre sí.

El voltaje en un generador eléctrico se induce, ya sea cuando una bobina se mueve a través de un campo magnético o bien cuando el campo producido en los polos en movimiento cortan una bobina estacionaria. En ambos casos, el flujo total es sustancialmente contante, pero hay un cambio en la cantidad de flujo que eslabona a la bobina. Este mismo principio es válido para el transformador, solo que en este caso las bobinas y el circuito magnético son estacionarios (no tienen movimiento), en tanto que el flujo magnético cambio continuamente.

El cambio en el flujo se puede obtener aplicando una corriente alterna en al bobina. La corriente, a través de la bobina, varía en magnitud con el tiempo, y por lo tanto, el flujo producido por esta corriente, varia también en magnitud con el tiempo.

El flujo cambiante con el tiempo que se aplica en uno de los devanados, induce un voltaje E1 (en el primario). Si se desprecia por facilidad, la caída de voltaje por resistencia de el devanado primario, el valor de E1 será igual y de sentido opuesto al voltaje aplicado V1. De la ley de inducción electromagnética, se sabe que este voltaje inducido E1 en el devanado primario y también al índice de cambio del flujo en la bobina. Se tienen dos relaciones importantes.

V1 = - E1

E1  N1 (0/T)

La mismo tiempo que el flujo cambia en al bobina primaria, también cambia en la bobina secundaria, dado que ambas bobinas se encuentran dentro del mismo medio magnético, y entonces el índice de cambio del flujo magnético en ambas bobinas es exactamente el mismo. Este cambio en el flujo inducirá un flujo E2 en la bobina secundaria que será proporcional al número de espiras en el devanado secundario N2. Si se considera que no se tiene carga conectada al circuito secundario, el voltaje inducido E2 es el voltaje que aparece en las terminales del secundario, por lo que se tienen dos relaciones adicionales.

E2  N2 (0/T)

E2 = V2

En virtud de que armas bobinas se encuentran devanadas en el mismo circuito magnético, los factores de proporcionalidad para las ecuaciones de voltaje son iguales, de manera que si se dividen las ecuaciones para E1 y E2 se tiene:

E1 = N1

E2 N2

Además como numéricamente deben ser iguales E1 y V2 o V2 - A ecuación anterior se puede escribir como:

V1 = Ng

V2 N2

Diagrama equivalente de un transformador monofásico.

La resistencia Ro representa el efecto disipativo, debido a las pérdidas en vacío, R1 es la resistencia del devanado primario, R2 la del secundario.

En forma análoga Xo representa el efecto de absorción de la corriente de magnetización, en tanto que X1 y X2 representan los efectos de los flujos dispersos en los devanados primario y secundario.

Para algunos estudios, no se requiere considerar los efectos de la saturación del núcleo del transformador y son despreciables, en cambio en otros se requiere de mayor precisión y entonces a Ro y Xo se les atribuyen propiedades no lineales.

Como se mencionó antes, para algunos estudios es conveniente hacer referencia a los valores de tensiones y corrientes referidos a un devanado a un lado del transformador, por lo general, el primario que es el de alimentación. En estos casos el esquema equivalente se simplifica a un circuito “T”.

PARTES DEL TRANSFORMADOR MONOFASICO

Un Transformador Monofásicos con arrollamientos únicos en el primario y el secundario

En la figura(a) se puede observar las partes de un transformador monofásico

Fig.a

Por forma de Núcleo

Consideraciones generales.

Un transformador consta de dos partes esenciales: El núcleo magnético y los devanados, estos están relacionados con otros elementos destinados a las conexiones mecánicas y eléctrica entre las distintas partes al sistema de enfriamiento, al medio de transporte y a la protección de la máquina en general. en cuanto a las disposiciones constructivas, el núcleo determina característica relevantes, de manera que se establece una diferencia fundamental en la construcción de transformadores, dependiendo de la forma del núcleo, pudiendo ser el llamado NUCLEO TIPO COLUMNAS y el NUCLEO TIPO ACORAZADO, existen otros aspectos que establecen diferencias entre tipos de transformadores, como es por ejemplo el sistema de enfriamiento, que establece la forma de disipación del calor producido en los mismos, o bien en términos de su potencia y voltaje para aplicaciones, como por ejemplo clasificar en transformadores de potencia a tipo distribución.

La construcción del núcleo.

El núcleo magnético está formado por laminaciones de acero que tienen pequeño porcentajes de silicio (alrededor del 4%) y que se denominan “laminaciones magnéticos”, estas laminaciones tienen la propiedad de tener pérdidas relativamente bajas por efecto de histéresis y de corrientes circulantes.

Están formados por un conjunto de laminaciones acomodadas en la forma y dimensiones requeridas. La razón de usar laminaciones de acero al silicio en los núcleos de las máquinas eléctricas, es que el silicio aumenta la resistividad del material y entonces hace disminuir la magnitud de las corrientes parásitas o circulantes y en consecuencia las pérdidas por este concepto.

En el caso de transformadores de gran potencia, se usan las llamadas “laminaciones de cristal orientado” cuyo espesor es de algunos milímetros y contienen entre 3% y 4% de silicio, se obtienen de material laminado en caliente, después se hace el laminado en frío, dando un tratamiento térmico final a la superficie de las mismas. Este tipo de laminación cuando se sujetan al flujo en la dirección de las laminaciones, presentan propiedades magnéticas mejores que la laminación “normal” de acero al silicio usada para otro tipo de transformadores.

Elementos de los núcleos de transformadores.

En los núcleos magnéticos de los transformadores tipo columna se distinguen dos partes principales: “las columnas” o piernas y los “yugos”. En las columnas se alojan los devanados y los yugos unen entre si la las columnas para cerrar el circuito magnético.

Debido a que las bobinas se deben montar bajo un cierto procedimiento y desmontar cuando sea necesario por trabajos de mantenimiento, los núcleos que cierran el circuito magnético, terminar al mismo nivel en la parte que está en contacto con los yugos, o bien con salientes. En ambos casos los núcleos se arman con “juegos” de laminaciones para columnas y yugos que se arman por capas de arreglos “pares” e “impares”.

Cuando se emplean laminaciones de cristal orientado, es necesario que las uniones entre yugos y columnas se realicen con cortes inclinados

...

Descargar como (para miembros actualizados) txt (59 Kb)
Leer 34 páginas más »
Disponible sólo en Clubensayos.com