ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Alotropía

katherineb1994Informe31 de Mayo de 2015

2.196 Palabras (9 Páginas)245 Visitas

Página 1 de 9

Alotropía (cambio, giro) es la propiedad de algunos elementos químicos de poseer estructuras químicas diferentes. Las moléculas formadas por un solo elemento y que poseen distinta estructura molecular se llaman alótropos. Característica de ciertos elementos que pueden existir en varias formas sólidas, líquidas o gaseosas, a causa de la distinta distribución y organización de los átomos que constituyen sus moléculas.

Formas del carbono

En la alotropía del carbono, se conocen cinco formas, sin contar con el carbono amorfo, y son: grafito, diamante, fullerenos, carbonos, y nanotubos.

En éste caso trataremos las tres primeras formas alotrópicas por ser las más usadas, famosas o abundantes.

Grafito:

El grafito posee una estructura laminar (como se puede observar en la figura), las láminas están separadas por capas, y cada capa tiene una separación entra ellas de3.35 Å, que se corresponde a la suma de los radios de Van der Waals, lo que nos indica que las fuerzas entre las capas debe de ser relativamente débil. Este hecho nos indica la blandura del grafito, así como las propiedades lubricantes, que se suele atribuir al deslizamiento de una capa sobre la otra.

Las capas pueden ondularse, debido a la saturación de los átomos de carbono y la pérdida, por tanto del sistema π. Este hecho confiere propiedades como la no conductividad, o el ser incoloros.

Solamente se conocen dos tipos:

-óxido de grafito

-fluoruro de grafito.

El óxido de grafito: Se obtiene tratando al grafito con agentes oxidantes muy fuertes en estado acuoso, como el ácido nítrico o el permanganato de potasio. La composición no es totalmente fija, pero se asemeja al C2O, aunque puede contener algo de H, y sus capas se encuentran separadas de 6 a 11 Å.

Fluoruro de grafito: Se obtiene a través de fluoración directa del grafito a unos 600º C de temperatura. A menor temperatura, y en presencia del HF, se forma un sólido gris (o también blanco si está puro), con propiedades lubricantes como el grafito, pero en este caso es más resistente a la oxidación, siendo también hidrófobo y nada reactivo.

Puede ocurrir que las capas mantengas su planaridad, en este caso tienen las propiedades de estar coloreados y ser conductores.

El carbón y el hollín, están formados por partículas pequeñas de grafito, sirviendo las grandes superficies de estos materiales para absorber distintos gases y solutos.

Los objetos que se comercializan fabricados en fibra de carbono, se producen al pirolizar las fibras de los polímeros orgánicos.

El grafito tiene hoy en día diversas aplicaciones, en la fabricación de lápices, debido a la buena conducción de la electricidad y el calor, también se utiliza el grafito para revestir los moldes de galvanoplastia, para poder fabricar crisoles o moldes que serán someti2dos a altas temperaturas. También se usa para evitar las oxidaciones, y en los últimos tiempos, es considerado como un buen mineral para la construcción de armamento nuclear, debido a su uso para reducir la acción de neutrones de uranio.

Fullerenos:

Se forman cuando el grafito se vaporiza en un láser. Esta es una variedad de grupos, grandes que tienen un núcleo constante de átomos de carbono.

Se denomina fullereno a dicho agrupamiento de átomos, siendo el más famoso el conocido como C60.

Fue descubierto en 1985 por H. Kroto, cuando intentaba estudiar la estructura de una molécula de carbono, misteriosa hasta el momento, que existe en el espacio exterior.

La investigación demostró que un modelo de 60 átomos, era más fuerte y estable que el resto, cosa inexplicable en aquel momento. La búsqueda de respuestas sugirió, que los átomos se colocaban en forma de esfera formando hexágonos y pentágonos, haciendo recordar a la forma de la cúpula del arquitecto Richard Buckminster Fuller, de ahí que se les de el nombre de Fullerenos.

Una curiosa característica es el hecho de que los hexágonos y pentágonos coinciden siempre en 60 puntos, configurando un aspecto de balón de futbol, y es por ello que también se les conocen con el nombre de futbolano. Desde que fueron descubiertos, los fullerenos se han investigado rápidamente, avanzando mucho en su conocimiento.

Los tamaños de los fullerenos oscilan entre los C30 y C1000, teniendo una estructura muy simétrica, que hacen que sean extremadamente elásticos y estables. Conservan la naturaleza deslocalizada del grafito, siendo ya sea en el interior o en el exterior, un gran mar de electrones π.

Gracias al diámetro interno del carbono, los fullerenos pueden alojar en su interior diferentes iones pequeños como los de helio, potasio, etc, existiendo también la posibilidad de que otros átomos se fijen al interior o exterior de las esferas, posibilitando la obtención de compuestos con propiedades fisicoquímicas bastante útiles, como el KC60, que es un buen superconductor.

Diamante:

El diamante tiene una estructura de cristal covalente tridimensional, que se encuentra formado por enlaces C-C interconectados, extendiéndose a través de todo el cristal, por lo que se dice que el diamante es una molécula gigante. La estructura cristalina, es cúbica y se encuentra centrada en la cada, a dicha estructura se la conoce comúnmente como red de diamante.

Es uno de los sólidos más duros que se conocen, y posee además una alta densidad, e índice de refracción, siendo la segunda forma alotrópica del carbono más estable (la primera es el grafito).

Su característica principal es la dureza ( resistencia a la rayadura), propiedad que permite su aplicación fundamentalmente en herramientas de pulido o de corte.

Gracias a la estructura característica, la cual es bastante rígida, es difícil la contaminación con impurezas.

El diamante es sin duda la piedra preciosa más popularmente conocida, gracias a sus propiedades ópticas, transparencia, dureza, etc.

El diamante sólo se puede obtener partiendo del carbono grafito, sometiéndolo a altas presiones y altas temperaturas. En torno al 40% de la producción mundial de diamante hoy en día, es sintética, simulando las condiciones del manto terrestre donde se forman a través del magma de manera natural, llegando a la superficie terrestre a través de las erupciones volcánicas.

La identificación de los diamantes se realiza a través de su alta conductividad eléctrica, o el índice de refracción.

Los diamantes tienen una industria con dos ramas, una la dedicada al diamante a modo de piedra preciosa, y otra industrial.

 nanotubos

Los nanotubos de carbono son una forma alotrópica del carbono, como el diamante, el grafito o los fullerenos. Su estructura puede considerarse procedente de una lámina de grafito enrolladas sobre sí misma.1 Dependiendo del grado de enrollamiento, y la manera como se conforma la lámina original, el resultado puede llevar a nanotubos de distinto diámetro y geometría interna. Estos estan conformados como si los extremos de un folio se uniesen por sus extremos formando el susodicho tubo, se denominan nanotubos monocapa o de pared simple. Existen, también, nanotubos cuya estructura se asemeja a la de una serie de tubos concéntricos, incluidos unos dentro de otros, a modo de muñecas matrioskas y, lógicamente, de diámetros crecientes desde el centro a la periferia. Estos son los nanotubos multicapa. Se conocen derivados en los que el tubo está cerrado por media esfera de fulereno, y otros que no están cerrados.

Están siendo estudiados activamente, como los fulerenos, por su interés fundamental para la química y por sus aplicaciones tecnológicas. Es, por ejemplo, el primer material conocido por la humanidad capaz, en teoría, de sustentar indefinidamente su propio peso suspendido sobre nuestro planeta. Teóricamente permitiría construir un ascensor espacial, debido a que para ello se necesita un material con una fuerza tensil de 100 GPa y se calcula que los nanotubos de carbono tienen una fuerza tensil de 200 GPa.2

carbino

En química, un carbino es una especie de carbono monovalente radical que contiene un átomo de carbono univalente eléctricamente neutro con tres electrones no enlazados.1 Es más fuerte y más rígido que cualquier otro material conocido. De hecho, el carbino es aproximadamente 2 veces más fuerte que el grafeno y nanotubos de carbono, que hasta ahora eran los materiales más fuertes. El carbino tiene una larga lista de propiedades inusuales y muy deseable que lo convierten en un material interesante para una amplia gama de aplicaciones.2

Fase gaseosa/intermediario reactivo[editar]

Un

...

Descargar como (para miembros actualizados) txt (17 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com