ESCALAS dibujo técnico
jesusaularTesis20 de Abril de 2015
7.017 Palabras (29 Páginas)602 Visitas
ESCALAS dibujo técnico
DEFINICIÓN
La representación de objetos a su tamaño natural no es posible cuando éstos son muy grandes o cuando son muy pequeños. En el primer caso, porque requerirían formatos de dimensiones poco manejables y en el segundo, porque faltaría claridad en la definición de los mismos.
Esta problemática la resuelve la ESCALA, aplicando la ampliación o reducción necesarias en cada caso para que los objetos queden claramente representados en el plano del dibujo.
Se define la ESCALA como la relación entre la dimensión dibujada respecto de su dimensión real, esto es:
E = dibujo / realidad
Si el numerador de esta fracción es mayor que el denominador, se trata de una escala de ampliación, y será de reducción en caso contrario. La escala 1:1 corresponde a un objeto dibujado a su tamaño real (escala natural).
CLASIFICACIÓN
Según la aplicación en el dibujo, se establecen tres tipos:
• Escala de ampliación: cuando las dimensiones del dibujo son mayores a las del objeto real.
• Escala natural: cuando las dimensiones del objeto y su representación en el plano son iguales.
• Escala de reducción: cuando las dimensiones del dibujo son menores las dimensiones del objeto real.
EL ESCALÍMETRO:
Un Escalímetro es una regla especial cuya sección transversal tiene forma prismática con el objeto de contener diferentes escalas en la misma regla. Se emplea frecuentemente para medir en dibujos que contienen diversas escalas. En su borde contiene un rango con escalas calibradas y basta con girar sobre su eje longitudinal para ver la escala apropiada.
CUADRANTES ESPECIALES
La forma habitual Más del Escalímetro Es La De Una regla de 30 cm deLongitud, con section estrellada de 6 Facetas o caras. Cada uña de ESTASFacetas va graduada con escalas Diferentes, Que habitualmente hijo:1
: 100, 1: 200, 1: 250, 1: 300, 1: 400, 1: 500
Estás Escalas hijo Validas IGUALMENTE párr Valores Que resulten demultiplicarlas o dividirlas Por 10, Asi Por ejemplo, la escala 1: 300 es utilizableen planos una escala 1:30 ó 1: 3000, Entre Otras.
ABASTECIMIENTO DE PLANOS
es el método que se utiliza para representar la forma exacta de un modelo por medio de dos o más vistas sobre planos que forman ángulos rectos entre sí. Una proyección es ortogonal cuando su dirección es perpendicular al plano de proyección. La proyección se obtiene por la intersección de las perpendiculares trazadas desde el modelo sobre los planos de proyección.
Los puntos de intersección entre las rectas y el plano, constituyen proyecciones de los diferentes puntos del cuerpo, y al ser unidos mediante líneas, nos darán la proyección o imagen del mencionado cuerpo. Las rectas que van del foco al plano de proyección se denominan planos proyectantes. Cuando el foco o punto de origen está situado en el infinito, las proyectantes serán líneas paralelas, por lo cual las proyecciones así originadas reciben el nombre de cilíndricas. Esas líneas proyectantes pueden incidir en el plano de proyección en forma oblicua o perpendicular.
El sistema diédrico es una proyección ortogonal en la que se utilizan dos planos de proyección, uno horizontal (P.H.) y otro vertical (P.V.) que forman un ángulo diedro recto. Las proyecciones toman su nombre de estos dos planos, llamándose proyección horizontal a la que se encuentra en dicho plano, y proyección vertical a la que se halla en el plano del mismo nombre.
Como los dos planos se extienden al infinito y dividen el espacio en cuatro ángulos diedros, enumerados a partir del superior, se denominan cuadrantes. La intersección de los dos planos se denominan línea de tierra y se representa por las letras LT, XY o también dos guiones, uno a cada extremo.
Se ha señalado que el objetivo de la geometría descriptiva es representar sobre un plano figuras del espacio. Sin embargo en el sistema diédrico, se mencionan dos planos de proyección. Para obtener esa condición se recurre al artificio de hacer que el plano vertical gire 90º alrededor de la línea de tierra, hasta que los cuadrantes 1 y 3 se conviertan en ángulos llanos. Así se obtiene un solo plano que sería el papel de dibujo o el pizarrón.
Al reducir los dos planos de proyección a uno solo, éste queda dividido en dos partes por la línea de tierra: la superior corresponderá al plano vertical y la inferior al plano horizontal. También es necesario tener en cuenta que las proyecciones vertical y horizontal de un punto se corresponden mediante una recta perpendicular a la línea de tierra que recibe el nombre de línea de correspondencia.
ÓVALO dibujo técnico
DEFINICIÓN
Es una curva cerrada y plana compuesta por un número par de arcos de circunferencia enlazados entre sí y simétricos respecto sus ejes mayor y menor normales entre sí.
CONSTRUCCIÓN
Trazado de óvalos
Construir un óvalo conociendo el eje mayor.
Primer método.
Dado el eje mayor AB, lo dividimos en tres partes iguales. Por sus divisiones trazamos dos circunferencias O1 y O2 de radio la tercera parte del eje AB, estas se cortan en los puntos O3 y O4.
O1, O2, O3 y O4 son los centros de los cuatro arcos que compondrán el óvalo. Los arcos de centro O1 y O2 tienen como radio la tercera parte del eje mayor y son tangentes a las trazadas con centro en O3 y O4, los puntos de enlace T2, T4, T1 y T3 de las circunferencias O1 Y O2 con O3 y O4 respectivamente están donde los segmentos unión de centros correspondientes corten a las circunferencias de centros O1 y O2. El radio de los arcos de centro O3 y O4 será por tanto la distancia existente entre ellos y sus correspondientes puntos de enlace (O3-T2).
Segundo método.
Dividimos en cuatro partes iguales el eje mayor dado AB obteniendo los centros O1 y O2 de dos de los arcos en sus divisiones intermedias. Con centro en los extremos Ay B dados y radios AO1 y BO2 trazamos dos arcos que se cortan en O3 y O4, centros de los dos arcos restantes. Los puntos de enlace se determinan uniendo los centros O1 y O2 con O3 y O4 y con estos quedan a su vez determinados los radios de los arcos de centros O3 y O4 (O3-T2).
Tercer método.
Dado AB, eje mayor, lo dividimos en cuatro partes obteniendo O1 y O2 en las divisiones más cercanas a A y B. Con centro en el punto medio del eje mayor, trazamos una circunferencia cuyo radio mida la cuarta parte de dicho eje que corta a la mediatriz de AB en O3 Y O4 centro de los arcos simétricos respecto de AB. Para determinar los puntos de enlace y radios de estos dos últimos arcos, unimos los centros correspondientes como en ejercicios precedentes.
Construir un óvalo conociendo el eje mayor. 3 métodos.
Construir un óvalo conociendo su eje menor.
Los extremos del eje menor dado serán centros de dos de los cuatro arcos de este óvalo (O3 y O4) y cuyo radio será igual al propio eje menor. Trazamos una circunferencia auxiliar de diámetro igual al eje menor dado que cortará a su mediatriz en los puntos O2 y O1, centros de los dos arcos restantes. Los puntos de enlace se calculan uniendo centros y con ellos los radios de los arcos de centros O1 y O2, arcos que cortarán a la mediatriz del eje menor en A y B, extremos del eje mayor.
Construir un óvalo conociendo sus dos ejes.
Dado el eje mayor AB y el menor CD, trasladamos sobre la prolongación del menor, la magnitud del semieje mayor, obteniendo el punto E. Con centro en el extremo C, trazamos un arco de radio CE que corta al segmento CA en X. La mediatriz de XA determina en su intersección con el eje mayor el punto O1, centro de uno de los arcos, su arco simétrico tendrá su centro O2 también sobre el eje mayor, a igual distancia de O y en sentido opuesto. Los radios de estos arcos los determinan las distancias a los extremos correspondientes del eje mayor AB.
La mediatriz de XA determina asimismo en su intersección sobre el eje menor o su prolongación el centro O4 y por simetría con respecto al eje mayor queda determinado O3. Los puntos de tangencia y los radios de los arcos de centros O3 y O4 se determinan como en ejercicios anteriores.
Construir un óvalo inscrito en un rombo dado.
Este trazado se emplea asiduamente para sustituir, en perspectiva isométrica, la elipse por el óvalo.
Dado el rombo ABCD, trazamos desde los extremos de la diagonal menor, rectas normales a los lados del opuestos rombo obteniendo T1, T2, T3 y T4, puntos de enlace de los arcos de centros O1 y O2, situados en las intersecciones de las normales trazadas. C y D son los centros de los arcos restantes. Los radios de los arcos quedan determinados por las distancias de los centros a los puntos de enlace correspondientes (O1-T1).
Construir un óvalo conociendo su eje menor, conociendo sus dos ejes e inscrito en un rombo dado.
OVOIDE.
DEFINICIÓN
Es una curva cerrada y plana compuesta por dos arcos de circunferencia de igual radio, y otros dos de distinto radio, uno de ellos una semicircunferencia. Tiene un eje de simetría que contiene a los centros de los arcos desiguales. Se denomina diámetro en el ovoide al diámetro de la semicircunferencia normal al eje.
CONSTRUCCIÓN
Trazado de ovoides.
Construir un ovoide conociendo su eje.
Dado el eje AB lo dividimos en seis partes iguales siendo las
...