El Atomo
andreacastro26Tesis19 de Diciembre de 2013
3.910 Palabras (16 Páginas)265 Visitas
Introducción
El nombre «átomo» proviene del latín atomum, y este del griego ἄτομον 'sin porciones, indivisible'; también, se deriva de a- ('no') y tómo (divisible).1 El concepto de átomo como bloque básico e indivisible que compone la materia del universo fue postulado por la escuela atomista en la Antigua Grecia. Sin embargo, no fueron considerados seriamente por los científicos hasta el siglo XIX, cuando fueron introcidos para explicar ciertas leyes químicas. Con el desarrollo de la física nuclear en el siglo XX se comprobó que el átomo puede subdividirse en partículas más pequeñas.2 3
Los átomos son objetos muy pequeños con masas igualmente minúsculas: su diámetro y masa son del orden de la billonésima parte de un metro y cuatrillonésima parte de un gramo. Solo pueden ser observados mediante instrumentos especiales tales como un microscopio de efecto túnel. Más de un 99,94% de la masa del átomo está concentrada en su núcleo, en general repartida de manera aproximadamente equitativa entre protones y neutrones. El núcleo de un átomo puede ser inestable y sufrir una transmutación mediante desintegración radioactiva. Los electrones en la nube del átomo están repartidos en distintos niveles de energía u orbitales, y determinan las propiedades químicas del mismo. Las transiciones entre los distintos niveles dan lugar a la emisión o absorción de radiación electromagnética en forma de fotones, y son la base de la espectroscopia.
Estructura atómica
Partículas subatómicas
Véase también: Partículas subatómicas
A pesar de que átomo significa ‘indivisible’, en realidad está formado por varias partículas subatómicas. El átomo contiene protones, neutrones y electrones, con la excepción del hidrógeno-1, que no contiene neutrones, y del catión hidrógeno o hidrón, que no contiene electrones. Los protones y neutrones del átomo se denominan nucleones, por formar parte del núcleo atómico.
El electrón es la partícula más ligera de cuantas componen el átomo, con una masa de 9,11 · 10−31 kg. Tiene una carga eléctrica negativa, cuya magnitud se define como la carga eléctrica elemental, y se ignora si posee subestructura, por lo que se lo considera una partícula elemental. Los protones tienen una masa de 1,67 · 10−27 kg, 1836 veces la del electrón, y una carga positiva opuesta a la de este. Los neutrones tienen un masa de 1,69 · 10−27 kg, 1839 veces la del electrón, y no poseen carga eléctrica. Las masas de ambos nucleones son ligeramente inferiores dentro del núcleo, debido a la energía potencial del mismo; y sus tamaños son similares, con un radio del orden de 8 · 10-16 m o 0,8 femtómetros (fm).4
El protón y el neutrón no son partículas elementales, sino que constituyen un estado ligado de quarks u y d, partículas fundamentales recogidas en el modelo estándar de la física de partículas, con cargas eléctricas iguales a +2/3 y −1/3 respectivamente, respecto de la carga elemental. Un protón contiene dos quarks u y un quark d, mientras que el neutrón contiene dos d y un u, en consonancia con la carga de ambos. Los quarks se mantienen unidos mediante la fuerza nuclear fuerte, mediada por gluones —del mismo modo que la fuerza electromagnética está mediada por fotones—. Además de estas, existen otras partículas subatómicas en el modelo estándar: más tipos de quarks, leptones cargados (similares al electrón), etc.
El núcleo atómico
Artículo principal: Núcleo atómico
Los protones y neutrones de un átomo se encuentran ligados en el núcleo atómico, la parte central del mismo. El volumen del núcleo es aproximadamente proporcional al número total de nucleones, el número másico A,5 lo cual es mucho menor que el tamaño del átomo, cuyo radio es del orden de 105 fm o 1 ångström (Å). Los nucleones se mantienen unidos mediante la fuerza nuclear, que es mucho más intensa que la fuerza electromagnética a distancias cortas, lo cual permite vencer la repulsión eléctrica entre los protones.6
Los átomos de un mismo elemento tienen el mismo número de protones, que se denomina número atómico y se representa por Z. Los átomos de un elemento dado pueden tener distinto número de neutrones: se dice entonces que son isótopos. Ambos números conjuntamente determinan el núclido.
El núcleo atómico puede verse alterado por procesos muy energéticos en comparación con las reacciones químicas. Los núcleos inestables sufren desintegraciones que pueden cambiar su número de protones y neutrones emitiendo radiación. Un núcleo pesado puede fisionarse en otros más ligeros en una reacción nuclear o espontáneamente. Mediante una cantidad suficiente de energía, dos o más núcleos pueden fusionarse en otro más pesado.
En átomos con número atómico bajo, los núcleos con una cantidad distinta de protones y neutrones tienden a desintegrarse en núcleos con proporciones más parejas, más estables. Sin embargo, para valores mayores del número atómico, la repulsión mutua de los protones requiere una proporción mayor de neutrones para estabilizar el núcleo.7
Nube de electrones
Artículo principal: Nube de electrones
Los cinco primeros orbitales atómicos.
Los electrones en el átomo son atraídos por los protones a través de la fuerza electromagnética. Esta fuerza los atrapa en un pozo de potencial electrostático alrededor del núcleo, lo que hace necesaria una fuente de energía externa para liberarlos. Cuanto más cerca está un electrón del núcleo, mayor es la fuerza atractiva, y mayor por tanto la energía necesaria para que escape.
Los electrones, como otras partículas, presentan simultáneamente propiedades de partícula puntual y de onda, y tienden a formar un cierto tipo de onda estacionaria alrededor del núcleo, en reposo respecto de este. Cada una de estas ondas está caracterizada por un orbital atómico, una función matemática que describe la probabilidad de encontrar al electrón en cada punto del espacio. El conjunto de estos orbitales es discreto, es decir, puede enumerarse, como es propio en todo sistema cuántico. La nube de electrones es la región ocupada por estas ondas, visualizada como una densidad de carga negativa alrededor del núcleo.
Cada orbital corresponde a un posible valor de energía para los electrones, que se reparten entre ellos. El principio de exclusión de Pauli prohíbe que más de dos electrones se encuentren en el mismo orbital. Pueden ocurrir transiciones entre los distintos niveles de energía: si un electrón absorbe un fotón con energía suficiente, puede saltar a un nivel superior; también desde un nivel más alto puede acabar en un nivel inferior, radiando el resto de la energía en un fotón. Las energías dadas por las diferencias entre los valores de estos niveles son las que se observan en las líneas espectrales del átomo.
Propiedades atómicas
Masa
La mayor parte de la masa del átomo viene de los nucleones, los protones y neutrones del núcleo. También contribuyen en una pequeña parte la masa de los electrones, y la energía de ligadura de los nucleones, en virtud de la equivalencia entre masa y energía. La unidad de masa que se utiliza habitualmente para expresarla es la unidad de masa atómica (u). Esta se define como la doceava parte de la masa de un átomo neutro de carbono-12 libre, cuyo núcleo contiene 6 protones y 6 neutrones, y equivale a 1,66 · 10-27 kg aproximadamente. En comparación el protón y el neutrón libres tienen una masa de 1,007 y 1,009 u. La masa de un átomo es entonces aproximadamente igual al número de nucleones en su núcleo —el número másico— multiplicado por la unidad de masa atómica. El átomo estable más pesado es el plomo-208, con una masa de 207,98 u.8
En química se utiliza también el mol como unidad de masa. Un mol de átomos de cualquier elemento equivale siempre al mismo número de estos (6,022 · 1023), lo cual implica que un mol de átomos de un elemento con masa atómica de 1 u pesa aproximadamente 1 gramo. En general, un mol de átomos de un cierto elemento pesa de forma aproximada tantos gramos como la masa atómica de dicho elemento.
Tamaño
Artículo principal: Radio atómico
Los átomos no están delimitados por una frontera clara, por lo que su tamaño se equipara con el de su nube electrónica. Sin embargo, tampoco puede establecerse una medida de esta, debido a las propiedades ondulatorias de los electrones. En la práctica, se define el radio atómico estimándolo en función de algún fenómeno físico, como la cantidad y densidad de átomos en un volumen dado, o la distancia entre dos núcleos en una molécula.
Los diversos métodos existentes arrojan valores para el radio atómico de entre 0,5 y 5 Å. Dentro de la tabla periódica de los elementos, el tamaño de los átomos tiende a disminuir a lo largo de un periodo —una fila—, para aumentar súbitamente al comienzo de uno nuevo, a medida que los electrones ocupan niveles de energía más altos.9
Las dimensiones del átomo son miles de veces más pequeñas que la longitud de onda de la luz (400-700 nm) por lo que estos no pueden ser observados utilizando instrumentos ópticos. En comparación, el grosor de un cabello humano es equivalente a un millón de átomos de carbono. Si una manzana fuera del tamaño de la Tierra, los átomos en ella serían tan grandes como la manzana original.10
Niveles de energía
Artículos principales: Nivel de energía y Línea espectral.
Un electrón ligado en el átomo posee una energía potencial inversamente proporcional a su distancia al núcleo y de signo negativo,
...