ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fresadora


Enviado por   •  25 de Agosto de 2014  •  4.220 Palabras (17 Páginas)  •  219 Visitas

Página 1 de 17

INTRODUCCIÓN

Desde el minúsculo reloj de pulsera al motor de un transatlántico, son innumerables los mecanismos que cumplen su cometido gracias a los engranajes.

El engranaje es una rueda o cilindro dentado empleado para transmitir un movimiento giratorio o alternativo desde una parte de una máquina a otra. Un conjunto de dos o más engranajes que transmite el movimiento de un eje a otro se denomina tren de engranajes. Los engranajes se utilizan sobre todo para transmitir movimiento giratorio, pero usando engranajes apropiados y piezas dentadas planas pueden transformar movimiento alternativo en giratorio y viceversa.

Hay varios tipos de engranajes, el más sencillo es el engranaje recto, una rueda con dientes paralelos al eje tallados en su perímetro. Los engranajes rectos transmiten movimiento giratorio entre dos ejes paralelos. En un engranaje sencillo, el eje impulsado gira en sentido opuesto al eje impulsor. Si se desea que ambos ejes giren en el mismo sentido se introduce una rueda dentada denominada 'rueda loca' entre el engranaje impulsor o motor y el impulsado. La rueda loca gira en sentido opuesto al eje impulsor, por lo que mueve al engranaje impulsado en el mismo sentido que éste. En cualquier sistema de engranajes, la velocidad del eje impulsado depende del número de dientes de cada engranaje. Un engranaje con 10 dientes movido por un engranaje con 20 dientes girará dos veces más rápido que el engranaje impulsor, mientras que un engranaje de 20 dientes impulsado por uno de 10 se moverá la mitad de rápido. Empleando un tren de varios engranajes puede variarse la relación de velocidades dentro de unos límites muy amplios.

Los engranajes interiores o anulares son variaciones del engranaje recto en los que los dientes están tallados en la parte interior de un anillo o de una rueda con reborde, en vez de en el exterior. Los engranajes interiores suelen ser impulsados por un piñón, un engranaje pequeño con pocos dientes. La cremallera (barra dentada plana que avanza en línea recta) funciona como una rueda dentada de radio infinito y puede emplearse para transformar el giro de un piñón en movimiento alternativo, o viceversa.

Los engranajes cónicos, así llamados por su forma, tienen dientes rectos y se emplean para transmitir movimiento giratorio entre ejes no paralelos.

Y también están los engranajes helicoidales, los dientes de éstos no son paralelos al eje de la rueda dentada, sino que se enroscan en torno al eje en forma de hélice. Estos engranajes son apropiados para grandes cargas porque los dientes engranan formando un ángulo agudo, en lugar de 90º como en un engranaje recto. Los engranajes helicoidales sencillos tienen la desventaja de producir una fuerza que tiende a mover las ruedas dentadas a lo largo de sus ejes. Esta fuerza puede evitarse empleando engranajes helicoidales dobles, o bi-helicoidales, con dientes en forma de V compuestos de medio diente helicoidal dextrógiro y medio diente helicoidal levógiro. Los engranajes hipoides son engranajes cónicos helicoidales utilizados cuando los ejes son perpendiculares pero no están en un mismo plano. Una de las aplicaciones más corrientes del engranaje hipoide es para conectar el árbol de la transmisión con las ruedas en los automóviles de tracción trasera. A veces se denominan de forma incorrecta engranajes en espiral los engranajes helicoidales empleados para transmitir rotación entre ejes no paralelos.

Objetivo

• Conocer y analizar el proceso de fabricación de un engrane

• Calcular el tiempo de fabricación, así como el costo de la misma.

• Aplicar los conocimientos para el cálculo de parámetros, tomando en cuenta equipo, maquinaria, mano de obra y costos.

• Realizar el estudio analítico de cada procedimiento de acuerdo a la pieza a analizar, tomando en cuenta las diferentes alternativas.

MARCO TEORICO

Tipos de engranes

• Los engranes rectos, tienen dientes paralelos al eje de rotación y se emplean para transmitir movimiento de un eje a otro eje paralelo. De todos los tipos el engrane recto es el más sencillo, razón por la cual se usará para desarrollar las relaciones cinemáticas básicas de la forma de los dientes.

• Los engranes helicoidales, poseen dientes inclinados con respecto al eje de rotación, y se utilizan para las mismas aplicaciones que los engranes rectos y, cuando se utilizan en esta forma, no son tan ruidosos, debido al engranado más gradual de los dientes durante el acoplamiento. Asimismo, el diente inclinado desarrolla cargas de empuje y pares de flexión que no están presentes en los engranes rectos. En ocasiones los engranes helicoidales se usan para transmitir movimiento entre ejes no paralelos.

• Los engranes cónicos, que presentan dientes formados en superficies cónicas, se emplean sobre todo para transmitir movimiento entre ejes que se intersecan.

El tornillo sinfín o de gusano, representa el cuarto tipo de engrane básico. Como se indica, el gusano se parece a un tornillo. El sentido de rotación del gusano, también llamado corona de tornillo sinfín, depende del sentido de rotación del tornillo sinfín y de que los dientes de gusano se hayan cortado a la derecha o a la izquierda. Los engranajes de tornillo sinfín también se hacen de manera que los dientes de uno o de ambos elementos se envuelvan de manera parcial alrededor del otro. Dichos engranajes se llaman engranajes de envolvente simple o doble. Los engranajes de sinfín se emplean sobre todo cuando las relaciones de velocidad de los dos ejes son muy altas, digamos, de 3 o más.

❖ Nomenclatura

La terminología de los dientes de engranes recto. El círculo de paso es un círculo teórico en el que por lo general se basan todos los cálculos; su diámetro es el diámetro de paso. Los círculos de paso de un par de engranes acoplados son tangentes entre sí. Un piñón es el menor de dos engranes acoplados; a menudo, el mayor se llama rueda.

El paso circular p es la distancia, medida sobre el círculo de paso, desde un punto en un diente a un punto correspondiente en un diente adyacente. De esta manera, el paso circular es igual a la suma del espesor del diente y del ancho del espacio.

El módulo m representa la relación del diámetro de paso con el número de dientes. La unidad de longitud que suele emplearse es el milímetro. El módulo señala el índice del tamaño de los dientes en unidades SI.

El paso diametral P está dado por la relación del número de dientes en el engrane respecto del diámetro de paso. Por lo tanto, es el recíproco del módulo. Debido a que diametral se utiliza sólo con unidades del sistema inglés, se expresa en dientes por pulgada.

La cabeza a se determina por la distancia radial entre la cresta y el círculo de paso. La raíz b equivale a la distancia radial desde el fondo hasta el círculo de paso. La altura, o profundidad total h, es la suma de la cabeza y la raíz.

El círculo del claro es un círculo tangente al círculo de la raíz del engrane acoplado. El claro c está dado por la cantidad por la que la raíz en un engrane dado excede la cabeza de su engrane acoplado. El huelgo se determina mediante la cantidad por la cual el ancho del espacio de un diente excede el grosor o espesor del diente de acoplamiento medido en los círculos de paso.

❖ Acción conjugada

El acoplamiento de dientes de engranes que actúan entre sí para producir movimiento rotatorio es similar al de las levas. Cuando dos perfiles de dientes o levas se diseñan para producir una relación constante de velocidades angulares durante el acoplamiento, se dice que tienen una acción conjugada. En teoría, al menos, es posible seleccionar de manera arbitraria cualquier perfil para un diente, y luego determinar un perfil para los dientes de acoplamiento que producirá la acción conjugada.

Cuando una superficie curva empuja contra otra, el punto de contacto se presenta donde las dos superficies son tangentes entre sí, de modo que en cualquier instante las fuerzas están dirigidas a lo largo de una normal común ab a las dos curvas. La línea ab, que representa la dirección de acción de las fuerzas, se denomina línea de acción, e interceptará la línea de centros O-O en algún punto P. La relación de la velocidad angular entre los dos brazos es inversamente proporcional a sus radios respecto del punto P. Los círculos que se trazan a través del punto P, desde cada centro, se llaman círculos de paso; el radio de cada círculo se llama radio de paso. El punto P se conoce como punto de paso.

Un par de engranes en realidad, es un par de levas que actúan a través de un arco pequeño y, antes de terminar el recorrido del contorno involuta, se reemplazan por otro par idéntico de levas. Las levas funcionan en cualquier sentido y se configuran para transmitir una relación constante de velocidad angular. Si se emplean curvas involutas, los engranes son tolerantes a los cambios en la distancia entre centros sin mostrar variación en la relación constante de la velocidad angular. Además, los perfiles de la cremallera se configuran con flancos rectos, lo que hace más simple el maquinado de conformación primario.

Para transmitir movimiento a una relación constante de velocidad angular, el punto de paso debe permanecer fijo; es decir, todas las líneas de acción de cada punto instantáneo de contacto deben pasar por el mismo punto P. En el caso del perfil involuto, se demostrará que todos los puntos de contacto ocurren sobre la misma línea recta ab, que todas las normales a los perfiles de dientes en el punto de contacto coinciden con la línea ab, y, de esta manera, que dichos perfiles transmiten movimiento rotatorio uniforme.

Propiedades de la involuta

Una brida parcial B se fija al cilindro A, alrededor del cual se arrolla una cuerda def que se mantiene tirante. El punto b en la cuerda representa un punto de trazo, y a medida que la cuerda se arrolla o desenrolla respecto del cilindro, el punto b trazará la curva involuta ac. El radio de la curvatura é involuta varía en forma continua, de cero en el punto a hasta un máximo en el punto c. en el punto b, el radio corresponde a la distancia be, puesto que b gira de manera instantánea respecto del punto e. Así pues, la recta generatriz de es normal a la involuta en todos los puntos de intersección y, al mismo tiempo, siempre es tangente al cilindro A. El círculo sobre el que se genera la involuta se llama círculo base.

❖ Engranes helicoidales paralelos

Los engranes helicoidales que se emplean para transmitir movimiento entre ejes paralelos. El ángulo de la hélice es el mismo en cada engrane, pero uno debe ser hélice derecha y el otro hélice izquierda. La forma del diente es un helicoide involuta.

Si se corta una pieza de papel con la forma de un paralelogramo y se arrolla alrededor de un cilindro, el borde angular del papel se convierte en una hélice. Si este papel se desenrolla, cada punto del borde angular genera una curva involuta. La superficie que se obtiene cuando cada punto del borde genera una involuta se denomina helicoide involuto.

El contacto inicial de los dientes de engranes rectos es una línea que se extiende a todo lo largo de la cara del diente. El contacto inicial de los dientes de engranes helicoidales es un punto que se extiende en una línea a medida que se desarrolla el acople de los dientes. En los engranes rectos la línea de contacto

Resulta paralela al eje de rotación; en los engranes helicoidales la línea es diagonal a lo largo de la cara del diente. Este acoplamiento gradual de los dientes y la transferencia uniforme de la cara de un diente a otro proporcionan a los engranes helicoidales la capacidad de transmitir cargas pesadas a altas velocidades. Debido a la naturaleza de contacto entre engranes helicoidales, la relación de contacto sólo reviste menor importancia y está dada por el área de contacto, que es proporcional al ancho de la cara del engrane y que se vuelve significativa.

Los engranes helicoidales someten a los cojinetes del eje a cargas radial y de empuje. Cuando las cargas de empuje son altas o son objetables por otras razones, es mejor emplear engranes helicoidales dobles. Un engrane helicoidal doble (del tipo conocido como espina de pescado) equivale a dos engranes helicoidales con sentidos opuestos, montados lado a lado en el mismo eje. Estos engranes desarrollan reacciones de empuje opuestas y por lo tanto cancelan la carga de empuje.

Cuando dos o más engranes helicoidales individuales se montan en el mismo eje, es necesario seleccionar el sentido de los engranes para producir la carga de empuje mínima.

Fresadora

Una fresadora es una máquina herramienta utilizada para realizar mecanizados por arranque de viruta mediante el movimiento de una herramienta rotativa de varios filos de corte denominada fresa.1 Mediante el fresado es posible mecanizar los más diversos materiales como madera, acero, fundición de hierro, metales no férricos y materiales sintéticos, superficies planas o curvas, de entalladura, de ranuras, de dentado, etc. Además las piezas fresadas pueden ser desbastadas o afinadas. En las fresadoras tradicionales, la pieza se desplaza acercando las zonas a mecanizar a la herramienta, permitiendo obtener formas diversas, desde superficies planas a otras más complejas.

Inventadas a principios del siglo XIX, las fresadoras se han convertido en máquinas básicas en el sector del mecanizado. Gracias a la incorporación del control numérico, son las máquinas herramientas más polivalentes por la variedad de mecanizados que pueden realizar y la flexibilidad que permiten en el proceso de fabricación. La diversidad de procesos mecánicos y el aumento de la competitividad global han dado lugar a una amplia variedad de fresadoras que, aunque tienen una base común, se diferencian notablemente según el sector industrial en el que se utilicen. Asimismo, los progresos técnicos de diseño y calidad que se han realizado en las herramientas de fresar, han hecho posible el empleo de parámetros de corte muy altos, lo que conlleva una reducción drástica de los tiempos de mecanizado.

Debido a la variedad de mecanizados que se pueden realizar en las fresadoras actuales, al amplio número de máquinas diferentes entre sí, tanto en su potencia como en sus características técnicas, a la diversidad de accesorios utilizados y a la necesidad de cumplir especificaciones de calidad rigurosas, la utilización de fresadoras requiere de personal cualificado profesionalmente, ya sea programador, preparador o fresador.

El empleo de estas máquinas, con elementos móviles y cortantes, así como líquidos tóxicos para la refrigeración y lubricación del corte, requiere unas condiciones de trabajo que preserven la seguridad y salud de los trabajadores y eviten daños a las máquinas, a las instalaciones y a los productos finales o semielaborados.

Fresa

Herramienta de corte o pulido giratoria dotada de aristas cortantes dispuestas alrededor de un eje. Generalmente está hecha de acero o de materiales cerámicos de alta resistencia. La fresa puede ser de una sola pieza (sólida) o puede emplear pastillas o insertos intercambiables.

Partes de la fresadora

En las máquinas de fresar corrientemente usadas en los talleres de construcciones mecánicas, se distinguen las siguientes partes principales:

• Bastidor

• Husillo de trabajo

• Mesa

• Carro transversal

• Consola

• Caja de velocidades del husillo

• Caja de velocidades de los avances.

• El bastidor: Es una especie de cajón de fundición, de base reforzada y de forma generalmente rectangular, por medio del cual la máquina se apoya en el suelo. Es la parte que sirve de sostén a los demás órganos de la fresadora.

• Husillo de trabajo: Es uno de los órganos esenciales de la máquina, puesto que es el que sirve de soporte a la herramienta y le dota de movimiento. Este eje recibe el movimiento a través de la caja de velocidades.

• La mesa: Es el órgano que sirve de sostén a las piezas que han de ser trabajadas, directamente montadas sobre ella o a través de accesorios de fijación, para lo cual la mesa está provista de ranuras destinadas a alojar los tornillos de fijación.

• Carro transversal: Es una estructura de fundición de forma rectangular, en cuya parte superior se desliza y gira la mesa en un plano horizontal; en la base inferior, por medio de unas guias, está ensamblado a la consola, sobre la cual se desliza accionado a mano por tornillo y tuerca, o automáticamente, por medio de la caja de avances. Un dispositivo adecuado permite su inmovilización.

• La consola: Es el órgano que sirve de sostén a la mesa y sus mecanismos de accionamiento. Es un cuerpo de fundición que se desliza verticalmente en el bastidor a través de unas guías por medio de un tornillo telescopio y una tuerca fija. Cuando es necesario para algunos trabajos, se inmoviliza por medio de un dispositivo de bloqueo.

• Caja de velocidades del husillo: Consta de una serie de engranajes que pueden acoplarse según diferentes relaciones de transmisiones, para permitir una extensa gama de velocidades del husillo. Generalmente se encuentra alojada interiormente en la parte superior del bastidor. El accionamiento es independiente de que efectúa la caja de avances, lo cual permite determinar más juiciosamente las mejores condiciones de corte.

• Caja de avances de la fresadora: Es un mecanismo constituido por una serie de engranajes ubicados en el interior del bastidor, en su parte central, aproximadamente. Recibe el movimiento directamente del accionamiento principal de la máquina. Por medio de acoplamientos con ruedas correderas, pueden establecerse diversas velocidades de avances. El enlace del mecanismo con el husillo de la mesa o la consola se realiza a través de un eje extensible de articulaciones cardán

Tipos de fresadoras

Las fresadoras pueden clasificarse según varios aspectos, como la orientación del eje de giro o el número de ejes de operación. A continuación se indican las clasificaciones más usuales.

Fresadoras según la orientación de la herramienta

Dependiendo la orientación del eje de giro de la herramienta de corte, se distinguen tres tipos de fresadoras: horizontales, verticales y universales.

Horizontal

Una fresadora horizontal utiliza fresas cilíndricas que se montan sobre un eje horizontal accionado por el cabezal de la máquina y apoyado por un extremo sobre dicho cabezal y por el otro sobre un rodamiento situado en el puente deslizante llamado carnero. Esta máquina permite realizar principalmente trabajos de ranurado, con diferentes perfiles o formas de las ranuras. Cuando las operaciones a realizar lo permiten, principalmente al realizar varias ranuras paralelas, puede aumentarse la productividad montando en el eje portaherramientas varias fresas conjuntamente formando un tren de fresado. La profundidad máxima de una ranura está limitada por la diferencia entre el radio exterior de la fresa y el radio exterior de los casquillos de separación que la sujetan al eje porta fresas.

Vertical

En una fresadora vertical, el eje del husillo está orientado verticalmente, perpendicular a la mesa de trabajo. Las fresas de corte se montan en el husillo y giran sobre su eje. En general, puede desplazarse verticalmente, bien el husillo, o bien la mesa, lo que permite profundizar el corte. Hay dos tipos de fresadoras verticales: las fresadoras de banco fijo o de bancada y las fresadoras de torreta o de consola. En una fresadora de torreta, el husillo permanece estacionario durante las operaciones de corte y la mesa se mueve tanto horizontalmente como verticalmente. En las fresadoras de banco fijo, sin embargo, la mesa se mueve sólo perpendicularmente al husillo, mientras que el husillo en sí se mueve paralelamente a su propio eje.

Universal

Una fresadora universal tiene un husillo principal para el acoplamiento de ejes portaherramientas horizontales y un cabezal que se acopla a dicho husillo y que convierte la máquina en una fresadora vertical. Su ámbito de aplicación está limitado principalmente por el costo y por el tamaño de las piezas que se pueden trabajar. En las fresadoras universales, al igual que en las horizontales, el puente es deslizante, conocido en el argot como carnero, puede desplazarse de delante a detrás y viceversa sobre unas guías.

Fresadoras especiales

Además de las fresadoras tradicionales, existen otras fresadoras con características especiales que pueden clasificarse en determinados grupos. Sin embargo, las formas constructivas de estas máquinas varían sustancialmente de unas a otras dentro de cada grupo, debido a las necesidades de cada proceso de fabricación.

Fresadoras circulares tienen una amplia mesa circular giratoria, por encima de la cual se desplaza el carro portaherramientas, que puede tener uno o varios cabezales verticales, por ejemplo, uno para operaciones de desbaste y otro para operaciones de acabado. Además pueden montarse y desmontarse piezas en una parte de la mesa mientras se mecanizan piezas en el otro lado.

Fresadoras copiadoras disponen de dos mesas: una de trabajo sobre la que se sujeta la pieza a mecanizar y otra auxiliar sobre la que se coloca un modelo. El eje vertical de la herramienta está suspendido de un mecanismo con forma de pantógrafo que está conectado también a un palpador sobre la mesa auxiliar. Al seguir con el palpador el contorno del modelo, se define el movimiento de la herramienta que mecaniza la pieza. Otras fresadoras copiadoras utilizan, en lugar de un sistema mecánico de seguimiento, sistemas hidráulicos, electro-hidráulicos o electrónicos.

Fresadoras de pórtico, también conocidas como fresadoras de puente, el cabezal portaherramientas vertical se halla sobre una estructura con dos columnas situadas en lados opuestos de la mesa. La herramienta puede moverse verticalmente y transversalmente y la pieza puede moverse longitudinalmente. Algunas de estas fresadoras disponen también a cada lado de la mesa sendos cabezales horizontales que pueden desplazarse verticalmente en sus respectivas columnas, además de poder prolongar sus ejes de trabajo horizontalmente. Se utilizan para mecanizar piezas de grandes dimensiones.

Fresadoras de puente móvil, en lugar de moverse la mesa, se mueve la herramienta en una estructura similar a un puente grúa. Se utilizan principalmente para mecanizar piezas de grandes dimensiones.

Fresadora para madera es una máquina portátil que utiliza una herramienta rotativa para realizar fresados en superficies planas de madera. Son empleadas en bricolaje y ebanistería para realizar ranurados, como juntas de cola de milano o machihembrados; cajeados, como los necesarios para alojar cerraduras o bisagras en las puertas; y perfiles, como molduras. Las herramientas de corte que utilizan son fresas para madera, con dientes mayores y más espaciados que los que tienen las fresas para metal.

Fresadoras según el número de ejes

Las fresadoras pueden clasificarse en función del número de grados de libertad que pueden variarse durante la operación de arranque de viruta.

• Fresadora de tres ejes. Puede controlarse el movimiento relativo entre pieza y herramienta en los tres ejes de un sistema cartesiano.

• Fresadora de cuatro ejes. Además del movimiento relativo entre pieza y herramienta en tres ejes, se puede controlar el giro de la pieza sobre un eje, como con un mecanismo divisor o un plato giratorio. Se utilizan para generar superficies con un patrón cilíndrico, como engranajes o ejes estriados.

• Fresadora de cinco ejes. Además del movimiento relativo entre pieza y herramienta en tres ejes, se puede controlar o bien el giro de la pieza sobre dos ejes, uno perpendicular al eje de la herramienta y otro paralelo a ella (como con un mecanismo divisor y un plato giratorio en una fresadora vertical); o bien el giro de la pieza sobre un eje horizontal y la inclinación de la herramienta alrededor de un eje perpendicular al anterior. Se utilizan para generar formas complejas, como el rodete de una turbina Francis.

Movimientos

Movimientos de la herramienta

El principal movimiento de la herramienta es el giro sobre su eje. En algunas fresadoras también es posible variar la inclinación de la herramienta o incluso prolongar su posición a lo largo de su eje de giro. En las fresadoras de puente móvil todos los movimientos los realiza la herramienta mientras la pieza permanece inmóvil.

Movimientos de la mesa

La mesa de trabajo se puede desplazar de forma manual o automática con velocidades de avance de mecanizado o con velocidades de avance rápido en vacío. Para ello cuenta con una caja de avances expresados de mm/minuto, donde es posible seleccionar el avance de trabajo adecuado a las condiciones tecnológicas del mecanizado.

• Movimiento longitudinal: según el eje X, que corresponde habitualmente al movimiento de trabajo. Para facilitar la sujeción de las piezas la mesa está dotada de unas ranuras en forma de T para permitir la fijación de mordazas u otros elementos de sujeción de las piezas y además puede inclinarse para el tallado de ángulos. Esta mesa puede avanzar de forma automática de acuerdo con las condiciones de corte que permita el mecanizado.

• Movimiento transversal: según el eje Y, que corresponde al desplazamiento transversal de la mesa de trabajo. Se utiliza básicamente para posicionar la herramienta de fresar en la posición correcta.

• Movimiento vertical: según el eje Z, que corresponde al desplazamiento vertical de la mesa de trabajo. Con el desplazamiento de este eje se establece la profundidad de corte del fresado.

• Giro respecto a un eje longitudinal: según el grado de libertad U. Se obtiene con un cabezal divisor o con una mesa oscilante.

• Giro respecto a un eje vertical: según el grado de libertad W. En algunas fresadoras se puede girar la mesa 45º a cada lado, en otras la mesa puede dar vueltas completas.

Movimiento relativo entre pieza y herramienta

El movimiento relativo entre la pieza y la herramienta puede clasificarse en tres tipos básicos:

• El movimiento de corte es el que realiza la punta de la herramienta alrededor del eje del portaherramientas.

• El movimiento de avance es el movimiento de aproximación de la herramienta desde la zona cortada a la zona sin cortar.

• El movimiento de profundización de perforación o de profundidad de pasada es un tipo de movimiento de avance que se realiza para aumentar la profundidad del corte.

Cálculos

...

Descargar como  txt (26.2 Kb)  
Leer 16 páginas más »
txt