ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Electrostática


Enviado por   •  23 de Septiembre de 2013  •  2.365 Palabras (10 Páginas)  •  257 Visitas

Página 1 de 10

ELECTROSTÁTICA

1. Ley de Coulomb

La ley de Coulomb puede expresarse como:

La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa y tiene la dirección de la línea que las une. La fuerza es de repulsión si las cargas son de igual signo, y de atracción si son de signo contrario.

La constante de proporcionalidad depende de la constante dieléctrica del medio en el que se encuentran las cargas.

Es posible verificar la ley de Coulomb mediante un experimento sencillo. Considérense dos pequeñas esferas de masa "m" cargadas con cargas iguales, del mismo signo, y que cuelgan de dos hilos de longitud l, tal como se indica en la figura adjunta. Sobre cada esfera actúan tres fuerzas: el peso mg, la tensión de la cuerda T y la fuerza de repulsión eléctrica entre las bolitas . En el equilibrio:

(1)

y también:

(2)

Dividiendo (1) entre (2) miembro a miembro, se obtiene:

Siendo la separación de equilibrio entre las esferas cargadas, la fuerza de repulsión entre ellas, vale, de acuerdo con la ley de Coulomb y, por lo tanto, se cumple la siguiente igualdad:

(3)

Al descargar una de las esferas y ponerla, a continuación, en contacto con la esfera cargada, cada una de ellas adquiere una carga q/2, en el equilibrio su separación será y la fuerza de repulsíón entre las mismas estará dada por:

Por estar en equilibrio, tal como se dedujo más arriba: . Y de modo similar se obtiene:

(4)

Dividiendo (3) entre (4), miembro a miembro, se llega a la siguiente igualdad:

(5)

Midiendo los ángulos y y las separaciones entre las cargas y es posible verificar que la igualdad se cumple dentro del error experimental. En la práctica, los ángulos pueden resultar difíciles de medir, así que si la longitud de los hilos que sostienen las esferas son lo suficientemente largos, los ángulos resultarán lo bastante pequeños como para hacer la siguiente aproximación:

Con esta aproximación, la relación (5) se transforma en otra mucho más simple:

De esta forma, la verificación se reduce a medir la separación entre cargas y comprobar que su cociente se aproxima al valor indicado.

2. Campo Eléctrico

El campo eléctrico se define como la fuerza eléctrica por unidad de carga. La dirección del campo se toma como la dirección de la fuerza que ejercería sobre una carga positiva de prueba. El campo eléctrico esta dirigido radialmente hacia fuera de una carga positiva y radialmente hacia el interior de una carga puntual negativa.

3. Potencial Eléctrico

El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica para mover una carga positiva q desde la referencia hasta ese punto, dividido por unidad de carga de prueba. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde la referencia hasta el punto considerado en contra de la fuerza eléctrica.

Considérese una carga puntual de prueba positiva, la cual se puede utilizar para hacer el mapa de un campo eléctrico. Para tal carga de pruebalocalizada a una distancia r de una carga q, la energía potencial electrostática mutua es:

De manera equivalente, el potencial eléctrico es

4. Diferencia de Potencial Eléctrico

La diferencia de potencial entre dos puntos A y B de un campo eléctrico es un valor escalar que indica el trabajo que se debe realizar para mover una carga q0 desde A hasta B. La unidad en la que se mide el potencial es el Voltio o Volt.

El potencial es una medida que se suele usar de forma relativa (entre dos puntos) y por eso se la llama diferencia de potencial. También es posible definir al potencial absoluto en un punto como el trabajo para mover una carga desde el infinito hasta ese punto.

Si dos puntos entre los cuales hay una diferencia de potencial están unidos por un conductor, se produce un movimiento de cargas eléctricas generando una corriente eléctrica.

5. Capacitancia

En electromagnetismo y electrónica, la capacitancia o capacidad eléctrica es la propiedad que tienen los cuerpos para mantener una carga eléctrica. La capacitancia también es una medida de la cantidad de energía eléctrica almacenada para una diferencia de potencial eléctrico dada. El dispositivo más común que almacena energía de esta forma es el condensador. La relación entre la diferencia de potencial (o tensión) existente entre las placas del condensador y la carga eléctrica almacenada en éste, se describe mediante la siguiente expresión matemática:

donde:

• es la capacidad, medida en faradios (en honor al físico experimental Michael Faraday); esta unidad es relativamente grande y suelen utilizarse submúltiplos como el microfaradio o picofaradio.

• es la carga eléctrica almacenada, medida en culombios;

• es la diferencia de potencial (o tensión), medida en voltios.

Cabe destacar que la capacidad es siempre una cantidad positiva y que depende de la geometría del condensador considerado (de placas paralelas, cilíndrico, esférico). Otro factor del que depende es del dieléctrico que se introduzca entre las dos superficies del condensador. Cuanto mayor sea la constante dieléctrica del material no conductor introducido, mayor es la capacidad.

En la práctica, la dinámica eléctrica del condensador se expresa gracias a la siguiente ecuación diferencial, que se obtiene derivando respecto al tiempo la ecuación anterior.

Donde i representa la corriente eléctrica, medida en amperios.

6. Condensadores en Serie y Paralelo

Los sistemas que incluyen condensadores de más de uno ha de capacidad equivalente. Los condensadores pueden ser conectados entre sí de dos maneras. Se pueden conectar en serie y en paralelo. Veremos condensadores en paralelo en primer lugar.

En este circuito de condensadores conectados en paralelo.

Porque, a los lados izquierdo de los condensadores están conectados a la potencial, y el lado derecho la mano de los condensadores están conectados a la b. potencial En otras palabras, podemos decir que cada condensador tiene diferencia de potencial igual. Nos encontramos con la carga de cada condensador como;

Q1=C1.V

Q2=C2.V

Q3=C3.V

Carga total del sistema se encuentra mediante la suma de cada cargo.

Qtotal=Ceq.V

Qtotal= Q1+Q2+Q3=C1.V+C2.V+C3.V=V.(C1+C2+C3)=Ceq

Ceq=C1+C2+C3

Como puede ver, encontramos la capacidad equivalente del sistema en su; C1+C2+C3

Ahora vamos a ver los condensadores en serie;

En los condensadores en serie, cada condensador tiene el flujo de carga de la batería misma. En este circuito, + carga Q fluye desde la parte positiva de la batería a la placa izquierda del condensador de primera y atrae-Q de carga en la placa de la derecha, con la misma idea,-carga Q fluye desde la batería a la placa de la derecha del condensador de tercero y atrae + Q en la placa de la izquierda. Condensadores otros también están acusados de la misma manera. En resumen podemos decir que cada condensador tiene una carga igual a la masa.

C1.V1=Q

C2.V2=Q , V=V1+V2+V3 y Q=Ceq.V

C3.V3=Q

ELECTRODINÁMICA

1. Intensidad de Corriente

La corriente eléctrica es la circulación de cargas eléctricas en un circuito eléctrico.

La intensidad de corriente eléctrica(I) es la cantidad de electricidad o carga eléctrica(Q) que circula por un circuito en la unidad de tiempo(t). Para denominar la Intensidad se utiliza la letra I y su unidad es el Amperio(A).

Ejemplo:

La intensidad de corriente eléctrica viene dada por la siguiente fórmula:

Donde:

I: Intensidad expresada en Amperios(A)

Q: Carga eléctrica expresada en Culombios(C)

t: Tiempo expresado en segundos(seg.)

Habitualmente en vez de llamarla intensidad de corriente eléctrica, se utilizan indistintamente los términos: intensidad o corriente.

2. Ley de OHM

La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica, estrechamente vinculada a los valores de las unidades básicas presentes en cualquier circuito eléctrico como son:

1. Tensión o voltaje "E", en volt (V).

2. Intensidad de la corriente " I ", en ampere (A).

3. Resistencia "R" en ohm ( ) de la carga o consumidor conectado al circuito.

Postulado general de la Ley de Ohm

El flujo de corriente en ampere que circula por un circuito eléctrico cerrado, es directamente proporcional a la tensión o voltaje aplicado, e inversamente proporcional a la resistencia en ohm de la carga que tiene conectada.

Fórmula Matemática General de Representación de la Ley De OHM

Desde el punto de vista matemático el postulado anterior se puede representar por medio de la siguiente Fórmula General de la Ley de Ohm:

VARIANTE PRÁCTICA:

Aquellas personas menos relacionadas con el despeje de fórmulas matemáticas pueden realizar también los cálculos de tensión, corriente y resistencia correspondientes a la Ley de Ohm, de una forma más fácil utilizando el siguiente recurso práctico:

3. Resistencia en Serie y Paralelo

Dos resistencias están en serie si por ellas pasa exactamente la misma corriente. Resistencias en serie se suman para obtener una resistencia equivalente: Req = R1 + R2.

Dos resistencias están en paralelo si sobre los terminales correspondientes de éstas se establece un mismo voltaje. La resistencia equivalente de dos resistencias es el producto de éstas dividido por la suma de ambas: Req = (R1× R2)/(R1+R2).

EJEMPLO A: Encontrar la resistencia equivalente de las siguientes resistencias.

Solución: Estas resistencias están en serie.

Por tanto, la resistencia equivalente sería 4 + 9 = 13 Ω.

EJEMPLO B: Encontrar la resistencia equivalente de las siguientes resistencias.

Solución: Tenemos una resistencia de 3 Ω en serie con un paralelo de dos resistencias.

Primero se efectúa el paralelo (resistencias roja y azul): 6 × 12 /(6 + 12) = 4.

Luego se suman 3 + 4 = 7 Ω. Por tanto, la resistencia equivalente es de 7 Ω.

4. Resistencia en Triángulo y Estrella, Ecuaciones de Transformación

Figura 6.

a) Asociación en estrella.

b) Asociación en triángulo.

En la figura a) y b) pueden observarse respectivamente las asociaciones estrella y triángulo, también llamadas y o delta respectivamente. Este tipo de asociaciones son comunes en las cargas trifásicas. Las ecuaciones de equivalencia entre ambas asociaciones vienen dadas por el teorema de Kennelly:

Resistencias en estrella en función de las resistencias en triángulo (transformación de triángulo a estrella).

El valor de cada una de las resistencias en estrella es igual al cociente del producto de las dos resistencias en triángulo adyacentes al mismo terminal entre la suma de las tres resistencias en triángulo.

Resistencias en triángulo en función de las resistencias en estrella (transformación de estrella a triángulo)

El valor de cada una de las resistencias en triángulo es igual la suma de las dos resistencias en estrella adyacentes a los mismos terminales más el cociente del producto de esas dos resistencias entre la otra resistencia.

5. Fuerza Electromotriz

La fuerza electromotriz(FEM) es toda causa capaz de mantener una diferencia de potencial entre dos puntos de un circuito abierto o de producir una corriente eléctrica en un circuito cerrado. Es una característica de cada generador eléctrico. Con carácter general puede explicarse por la existencia de un campo electromotor cuya circulación, , define la fuerza electromotriz del generador.

Se define como el trabajo que el generador realiza para pasar por su interior la unidad de carga positiva del polo negativo al positivo, dividido por el valor en Culombios de dicha carga.

Esto se justifica en el hecho de que cuando circula esta unidad de carga por el circuito exterior al generador, desde el polo positivo al negativo, es necesario realizar un trabajo o consumo de energía (mecánica, química, etcétera) para transportarla por el interior desde un punto de menor potencial (el polo negativo al cual llega) a otro de mayor potencial (el polo positivo por el cual sale).

La FEM se mide en voltios, al igual que el potencial eléctrico.

Por lo que queda que:

Se relaciona con la diferencia de potencial entre los bornes y la resistencia interna del generador mediante la fórmula (el producto es la caída de potencial que se produce en el interior del generador a causa de la resistencia óhmica que ofrece al paso de la corriente). La FEM de un generador coincide con la diferencia de potencial en circuito abierto.

La fuerza electromotriz de inducción (o inducida) en un circuito cerrado es igual a la variación del flujo de inducción del campo magnético que lo atraviesa en la unidad de tiempo, lo que se expresa por la fórmula (Ley de Faraday). El signo - (Ley de Lenz) indica que el sentido de la FEM inducida es tal que se opone al descrito por la ley de Faraday ( ).

6. Leyes Kirchhoff

Ley de nodos

La suma algebraica de las corrientes en un nodo es igual a cero.

I1 – I2 – I3 = 0

Ley de mallas

La suma de todas las caídas de tensión en un malla es igual a la suma de todas las tensiones aplicada

VAB = V1 + V2 + V3

7. Efecto JOULE

Se conoce como efecto Joule al fenómeno por el cual si en un conductor circula corriente eléctrica, parte de la energía cinética de los electrones se transforma en calor1 2 debido a los choques que sufren con los átomos del material conductor por el que circulan, elevando la temperatura del mismo. El nombre es en honor a su descubridor, el físico británico James Prescott Joule.

El movimiento de los electrones en un cable es desordenado, esto provoca continuos choques entre ellos y como consecuencia un aumento de la temperatura en el propio cable.

Ley de Joule

Este efecto es utilizado para calcular la energía disipada en un conductor atravesado por una corriente eléctrica de la siguiente manera:

La potencia P disipada en un conductor es igual a la diferencia de potencial V a la que está sometido por la intensidad de corriente I que lo atraviesa. La energía desarrollada E es el producto de la potencia P por el tiempo t transcurrido, luego la energía E es el producto de la tensión V por la intensidad I y por el tiempo t.

Si a esta expresión añadimos la Ley de Ohm tendremos:

La energía desarrollada es igual al cuadrado de la intensidad por la resistencia y por el tiempo, o lo que es lo mismo, el cuadrado de la tensión dividido por la resistencia y por el tiempo.

Microscópicamente el efecto Joule se calcula a través de la integral de volumen del campo eléctrico por la densidad de corriente :

La resistencia es el componente que transforma la energía eléctrica en calor, (por ejemplo un hornillo eléctrico, una estufa eléctrica, una plancha etc.).

...

Descargar como  txt (14.8 Kb)  
Leer 9 páginas más »
txt