METROLOGIA
26 de Noviembre de 2014
3.014 Palabras (13 Páginas)366 Visitas
INTRODUCCIÓN
Este trabajo está hecho con el propósito de conocer claramente todas aquellas herramientas que nos permiten ver imágenes que son imposibles de observar con el ojo humano. Además de saber cuáles son, también aprender cual es la importancia o significado para la ciencia y la física.
En general los parámetros que caracterizan un fenómeno pueden clasificarse en Analógicos y Digitales, se dice que un parámetro es analógico cuando puede tomar todos los valores posibles en forma continua, por ejemplo: el voltaje de una batería, la intensidad de luz, la velocidad de un vehículo, la inclinación de un plano, etc.
Por otra parte se dice que un parámetro es digital cuando solo puede tomar valores discretos, por ejemplo: el número de partículas emitidas por un material radioactivo en un segundo, el número de moléculas, en un volumen dado de cierto material, el número de revoluciones de un motor en un minuto, etc.
“3.4.- DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES”
• Instrumentos Analógicos.
El término: Analógico Se refiere a las magnitudes o valores que varían con el tiempo en forma continua como la distancia y la temperatura, la velocidad, que podrían variar muy lento o muy rápido como un sistema de audio.
(Voltímetro análogo)
En la vida cotidiana el tiempo se representa en forma analógica por relojes (de agujas), y en forma discreta (digital) por displays digitales .En la tecnología analógica es muy difícil almacenar, manipular, comparar, calcular y recuperar información con exactitud cuando esta ha sido guardada, en cambio en la tecnología digital (computadoras, por ejemplo), se pueden hacer tareas muy rápidamente, muy exactas, muy precisas y sin detenerse. La electrónica moderna usa electrónica digital para realizar muchas funciones que antes desempeñaba la electrónica analógica.
Ventajas
a) Bajo Costo.
b) En algunos casos no requieren de energía de alimentación.
c) No requieren gran sofisticación.
d) Presentan con facilidad las variaciones cualitativas de los parámetros para visualizar rápidamente si el valor aumenta o disminuye.
e) Es sencillo adaptarlos a diferentes tipos de escalas no lineales.
Desventajas
a) Tienen poca resolución, típicamente no proporcionan más de 3 cifras.
b) El error de paralaje limita la exactitud a ± 0.5% a plena escala en el mejor de los casos.
c) Las lecturas se presentan a errores graves cuando el instrumento tiene varias escalas.
d) La rapidez de lectura es baja, típicamente 1 lectura/ segundo.
e) No pueden emplearse como parte de un sistema de procesamiento de datos de tipo digital.
Instrumentos Digitales.
El término: Digital Se refiere a cantidades discretas como la cantidad de personas en una sala, cantidad de libros en una biblioteca, cantidad de autos en una zona de estacionamiento, cantidad de productos en un supermercado, etc.
(Multímetro digital)
Los Sistemas digitales tienen una alta importancia en la tecnología moderna, especialmente en la computación y sistemas de control automático. La tecnología digital se puede ver en diferentes ámbitos: Analógico y Digital. ¿Cuál es la diferencia? mecánico: llaves electromecánico: el relé/relay hidráulico neumático electrónico .Los dos últimos dominan la tecnología.
Ventajas
a) Tienen alta resolución alcanzando en algunos casos más de 9 cifras en lecturas de frecuencia y una exactitud de + 0.002% en mediciones de voltajes.
b) No están sujetos al error de paralaje.
c) Pueden eliminar la posibilidad de errores por confusión de escalas.
d) Tienen una rapidez de lectura que puede superar las 1000 lecturas por segundo.
e) Puede entregar información digital para procesamiento inmediato en computadora.
Desventajas
a) El costo es elevado.
b) Son complejos en su construcción.
c) Las escalas no lineales son difíciles de introducir.
d) En todos los casos requieren de fuente de alimentación.
De las ventajas y desventajas anteriores puede observarse que para cada aplicación hay que evaluar en función de las necesidades específicas, cual tipo de instrumentos es el más adecuado, con esto se enfatiza que no siempre el instrumento digital es el más adecuado siendo en algunos casos contraproducente el uso del mismo.
Los instrumentos digitales tienden a dar la impresión de ser muy exactos por su indicación concreta y sin ambigüedades, pero no hay que olvidar que si su calibración es deficiente, su exactitud puede ser tanta o más mala que la de un instrumento analógico.
“3.5.- INSTRUMENTOS OPTICOS”
Para nosotros los seres humanos es muy importante controlar la luz, ya que los usos que le hemos dado son tan variados, como:
Lentes de contacto
Fotocopiadoras
Microscopios y lupas
Proyectores
Reproductores de cd
Rayos X
Laser (Luz Amplificada por Efecto de Radiación Estimulada)
Otros instrumentos ópticos son:
Lentes de aumento
Telescopio
Cámara fotográfica
La flexibilidad es el tema clave en la tecnología de multisensores. La flexibilidad en el mundo de la metrología significa tener la libertad de elegir entre medición por contacto y medición óptica, con sólo un sistema de medición. Por lo tanto, un único sistema es suficiente para la medición por contacto y la medición óptica de todas las características de inspección en una pieza de trabajo.
Para la medición de materiales sensibles al tacto, la solución ideal son los sistemas de medición óptica. Estos sistemas miden de forma no destructiva y con precisión. Gracias al versátil rango de sistemas de medición ópticos disponemos de la solución correcta para cada tarea de medición.
Equipos de medición a través de óptica física.
Espejo: Dispositivo óptico, generalmente de vidrio, con una superficie lisa y pulida, que forma imágenes mediante la reflexión de los rayos de luz. Además de su uso habitual en el hogar, los espejos se emplean en aparatos científicos; por ejemplo, son componentes importantes de los microscopios y los telescopios.
Prisma (Óptica): Bloque de vidrio u otro material transparente que tiene la misma sección transversal (generalmente un triángulo) en toda su longitud. Los dos tipos de prisma más frecuentes tienen secciones transversales triangulares con ángulos de 60 o de 45º. Los prismas tienen diversos efectos sobre la luz que pasa a través de ellos.
Cuando se dirige un rayo de luz hacia un prisma, sus componentes de distintos colores son refractados (desviados) en diferente medida al pasar a través de cada superficie, con lo que se produce una banda coloreada de luz denominada espectro. Este fenómeno se conoce como dispersión cromática, y se debe al hecho de que los diferentes colores de la luz tienen distintas longitudes de onda, y son más o menos frenados al pasar a través del vidrio: la luz roja es la que resulta menos frenada, y la violeta la que más.
Fibra Óptica: Fibra o varilla de vidrio u otro material transparente con un índice de refracción alto que se emplea para transmitir luz. Cuando la luz entra por uno de los extremos de la fibra, se transmite con muy pocas pérdidas incluso aunque la fibra esté curvada. El principio en que se basa la transmisión de luz por la fibra es la reflexión interna total; la luz que viaja por el centro o núcleo de la fibra incide sobre la superficie externa con un ángulo mayor que el ángulo crítico, de forma que toda la luz se refleja sin pérdidas hacia el interior de la fibra. Así, la luz puede transmitirse a larga distancia reflejándose miles de veces. Para evitar pérdidas por dispersión de luz debida a impurezas de la superficie de la fibra, el núcleo de la fibra óptica está recubierto por una capa de vidrio con un índice de refracción mucho menor; las reflexiones se producen en la superficie que separa la fibra de vidrio y el recubrimiento. La aplicación más sencilla de las fibras ópticas es la transmisión de luz a lugares que serían difíciles de iluminar de otro modo.
También pueden emplearse para transmitir imágenes, cada punto de la imagen proyectada sobre un extremo del haz se reproduce en el otro extremo, con lo que se reconstruye la imagen, que puede ser observada a través de una lupa. La transmisión de imágenes se utiliza mucho en instrumentos médicos para examinar el interior del cuerpo humano y para efectuar cirugía con láser, en sistemas de reproducción mediante facsímil y fotocomposición, en gráficos de ordenador o computadora y en muchas otras aplicaciones. Las fibras ópticas también se emplean en una amplia variedad de sensores, que van desde termómetros hasta giroscopios. Su potencial de aplicación en este campo casi no tiene límites, porque la luz transmitida a través de las fibras es sensible a numerosos cambios ambientales, entre ellos la presión, las ondas de sonido y la deformación, además del calor y el movimiento.
Las fibras pueden resultar especialmente útiles cuando los efectos eléctricos podrían hacer que un cable convencional resultara inútil, impreciso o incluso peligroso. También se han desarrollado fibras que transmiten rayos láser de alta potencia para cortar y taladrar materiales. La fibra óptica se emplea
...