ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Productos Notables

XanMos21 de Febrero de 2013

731 Palabras (3 Páginas)671 Visitas

Página 1 de 3

Productos notables

Existen algunas multiplicaciones de expresiones algebraicas que por sus características se pueden resolver en forma rápida, sin necesidad de recurrir al desarrollo termino a término, con la inevitable reducción de términos semejantes. En otras palabras, estas multiplicaciones se pueden resolver aplicando una regla práctica y por ello reciben el nombre de productos notables.

Productos notables

Cuadrado de la suma de dos cantidades o términos

a2 + 2ab + b2 = (a + b)2

El cuadrado de la suma de dos cantidades es igual al cuadrado de la primera cantidad, más el doble de la primera cantidad multiplicada por la segunda, más el cuadrado de la segunda cantidad.

Demostración:

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a2 + 2ab + b2 debemos identificarla de inmediato y saber que podemos factorizarla como (a + b)2

Cuadrado de la diferencia de dos términos

a2 – 2ab + b2 = (a – b)2

El cuadrado de la diferencia de dos cantidades es igual al cuadrado de la primera cantidad, menos el doble de la primera cantidad multiplicada por la segunda, más el cuadrado de la segunda cantidad.

Demostración:

(a – b)2 = (a – b) (a - b) = a2 + b2 - ab – ab = a2 + b2 – 2ab = a2 – 2ab +b2

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a2 – 2ab + b2 debemos identificarla de inmediato y saber que podemos factorizarla como (a – b)2

Producto de la suma por la diferencia de dos cantidades (o producto de dos binomios conjugados)

(a + b) (a – b) = a2 – b2

El producto de la suma por la diferencia de dos cantidades es igual al cuadrado de la primera cantidad, menos el cuadrado de la segunda

Demostración:

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma (a + b) (a – b) debemos identificarla de inmediato y saber que podemos factorizarla como a2 – b2

Cubo de la suma de dos términos

a3 + 3a2b + 3ab2 + b3 = (a + b)3

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 + 3a2b + 3ab2 + b3debemos identificarla de inmediato y saber que podemos factorizarla como (a + b)3.

Cubo de la diferencia de dos términos

a3 – 3a2b + 3ab2 – b3 = (a – b)3

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 – 3a2b + 3ab2 – b3debemos identificarla de inmediato y saber que podemos factorizarla como (a – b)3.

Producto de dos binomios con un término común o de la forma

(x + a) (x + b).

x2 + (a + b)x + ab = (x + a) (x + b)

Demostración:

(x + a) (x + b) = x2 + ab + bx + ax = x2 + ab + (a + b) x = x2 + (a + b) x + ab

Veamos un ejemplo explicativo:

Tenemos la expresión algebraica

x2 + 9 x + 14

obtenida del producto entre (x + 2) (x + 7 )

¿Cómo llegamos a la expresión?

a) El cuadrado del término común es (x)(x) = x2

b) La suma de términos no comunes multiplicada por el término común es (2 + 7)x = 9x

c) El producto de los términos no comunes es (2)(7) = 14

Así, tenemos:

x2 + 9 x + 14 = (x + 2) (x + 7 )

Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a + b)x + ab debemos identificarla de inmediato y saber que podemos factorizarla como (x + a) (x + b)

Producto de dos binomios de la forma (mx + a) (nx + b)

mnx2 + ab + (mb + na)x = (mx

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com