Qumica De La Fuerza Matematica
Rpxana66618 de Septiembre de 2013
235 Palabras (1 Páginas)254 Visitas
Teorema del residuo
Teorema que establece que si un polinomio de x, f(x), se divide entre (x - a), donde a es cualquier número real o complejo, entonces el residuo es f(a).
Por ejemplo, si f(x) = x2 + x - 2 se divide entre (x-2), el residuo es f(2) = 22 + (2) - 2 = 4. Este resultado puede volverse obvio si cambiamos el polinomio a una de las siguientes formas equivalentes:
f(x) = (x-2)(x+3) + 4
Como se muestra, la expresión anterior nos puede llevar fácilmente a esperar que 4 sea el residuo cuando f(x) se divide entre (x-2).
El teorema del residuo nos puede ayudar a encontrar los factores de un polinomio. En este ejemplo, f(1) = 12 + (1) - 2 = 0. Por lo tanto, significa que no existe residuo, es decir, (x-1) es un factor. Esto puede mostrarse fácilmente una vez que reacomodamos el polinomio original en una de las siguientes expresiones equivalentes:
f(x) = (x-1)(x+2)
Como se muestra, (x-1) es un factor.
Teorema del factor
El teorema del factor dice que, si f(a) = 0 en la que f(x) representa un polinomio de x, entonces (x - a) es uno de los factores de f(x).
Por ejemplo, tenemos que f(x) = 2x2 - 8. Ya que f(2) = 2(2) 2 - 8 = 0, (x - 2) debe ser uno de sus factores. En realidad, f(x) = 2x2 - 8 = 2(x + 2)(x - 2).
...