ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Historia De Las Computadora


Enviado por   •  3 de Septiembre de 2014  •  6.803 Palabras (28 Páginas)  •  519 Visitas

Página 1 de 28

HISTORIA DE LAS COMPUTADORAS

La historia conocida de los artefactos que calculan o computan, se remonta a muchos años antes de Jesucristo. Esta sección comienza desde la aparición del ábaco en China y Egipto, hasta la invención del Motor Diferencial de Charles Babbage, en 1822. El descubrimiento de los sistemas, por Charles Napier, condujo a los avances en las calculadoras. Al convertir la multiplicación y división en sumas y restas, una cantidad de máquinas (incluyendo la regla deslizante) puede realizar estas operaciones. Babbage sobrepasó los límites de la ingeniería cuando inventó su motor, basado en este principio. En esta etapa se inventaron:

Quizá fue el primer dispositivo mecánico de contabilidad que existió, Se piensa que se originó entre 600 y 500 a.C., en China o Egipto, y su historia se remonta a las antiguas civilizaciones griega y romana.

COMO SURGEN LAS COMPUTADORAS

En la época antigua (el ábaco)

El ábaco representa el artefacto más antiguo empleado para manipular datos. Se cree que alrededor del año 3000 BC, los babilonios empleaban el ábaco para realizar cómputos matemáticos rudimentarios.

Los Pioneros

1617 – John Napier

John Napier, un matemático Escocés, inventó los Huesos o Bastoncillos de Napier. Este artefacto permitía multiplicar grandes números mediante la manipulación de estos bastoncillos.

1623 – Wilhelm Schickard

Wilhelm Schickard fue el primer matemático en intentar desarrollar una calculadora. Nativo de Alemania, aproximadamente para el año 1623, éste matemático construyó un mecanismo que podía sumar, restar, multiplicar y dividir. Su plan era enviar a su amigo, Johannes Keple, una copia de su nueva invención, pero un fuego destruyó las partes antes que fueran ensambladas. El prototipo nunca fue encontrado, pero un esquema rudimentario de esta máquina sobrevivió. Para la década de los 1970, fue construido un modelo de este tipo de computador matemático.

1642 – Blaise Pascal

Blaise Pascal fue un matemático francés que nació en el 1623. Desde muy temprana edad era un entusiasta en el estudio autodidacta de las matemáticas. Antes de que alcanzara la edad de trece años, Pascal descubrió un error en la geometría de Descartes En el 1642 inventó una máquina calculadora que permitía sumar y restar, conocida como el Pascalino. Tal mecanismo, empleaba ruedas numeradas del 0 al 9, la cual incorporaba un mecanismo de dientes y cremalleras que permitían manejar números hasta 999,999.99. Debido al alto costo para reproducir este aparato, y porque la gente temía que fueran despedidas de sus trabajos, el Pascalino no fue un éxito comercial.

1694 – Gottfried Wilhelm Von Leibniz

Leibniz fue un matemático Alemán que diseño un instrumento llamado el “Stepped Reckoner”. Esta máquina era más versátil que la de Pascal puesto que podía multiplicar y dividir, así como sumar y restar.

1790 – Joseph Marie Jacquard

Creó el Telar de Jacquard (Jacquard’s Loom) el cual empleaba tarjetas perforadas para crear patrones en una fábrica de avitelado en una tejedora.

1812 – Charles Babbage

Charles Babbage fue un inglés que, agravado por errores en las tablas matemáticas que eran impresas, renunció a su posición en Cambridge para concentrar sus esfuerzos en el diseño y construcción de un dispositivo que pudiera resolver su problema. Babbage bautizó su máquina del ensueño con el nombre de Motor Diferencial (Differential Engine), pues ésta trabajaba para resolver ecuaciones diferenciales.

La Computadora Moderna

1943 – Howard Aiken

Como estudiante de Harvard, Aiken propuso a la universidad crear una computadora, basado en el Motor Analítico de Babbage. Lamentablemente, la universidad de Harvard no le proveyó la ayuda que necesitaba. Sin embargo, su idea tuvo buena acogida para la compañía privada de IBM. Entonces, Aiken, conjuntamente con un grupo de científicos, se lanzó a la tarea de construir su máquina. En el 1943, se completó su sueño con su nuevo bebé, llamado Mark I, también conocido por la IBM como “Automatic Sequence Controlled Calculator”. Este artefacto era de 51 pies de largo, 8 pies de altura y 2 pies de espesor; contaba con 750,000 partes y 500 millas de cable; y su peso era de 5 toneladas. Era muy ruidosa, pero capaz de realizar tres calculaciones por segundo. Este computador, aceptaba tarjetas perforadas, las cuales eran luego procesadas y almacenadas esta información. Los resultados eran impresos en una maquinilla eléctrica. Esta primera computadora electromecánica fue la responsable de hacer a IBM un gigante en la tecnología de las computadoras. Luego, Howard Aiken y la IBM se separaron en compañías independiente, alegadamente debido a la arrogancia de Aiken. Como fue documentado, IBM había invertido sobre $0.5 millones en la Mark I y en retorno a su inversión, Thomas J. Watson, el cual dirigía IBM, quería el prestigio de estar asociado con la Universidad de Harvard.

1939 – John Atanasoff

En el 1939, en la Universidad de Iowa State, John Atanasoff diseño y construyó la primera computadora digital mientras trabajaba con Clifford Berrr, un estudiante graduado. Más tarde, Atanasoff y Berry se dedicaron a trabajar en un modelo operacional llamado el ABC, el “Atanasooff-Berry Computer.”

COMO VA EVOLUCIONANDO

El desarrollo de las computadoras suele divisarse por generaciones y el criterio que se ha establecido para determinar el cambio de generación no está muy bien definido, pero aparentemente deben cumplirse al menos los siguientes requisitos:

 La forma en que están construidas (hardware)

 La forma en que el ser humano se comunica con ellas (hardware/software)

A continuación se presentan las características principales de éstas generaciones.

Generaciones de Computadoras

Desde su inicio, la computadora ha pasado por varias etapas de desarrollo. Por lo general, los escritores clasifican estos avances tecnológicos como generaciones, un término de mercadeo. Auque existe algún solapamiento, es conveniente visualizar el desarrollo tecnológico de esta manera.

Primera Generación de Computadoras:

La primera generación de computadoras comenzó en los años 1940 y se extendió hasta los 1950. Durante este periodo, las computadoras empleaban tubos al vacío para conducir la electricidad.

El uso de los tubos al vacío hacía que las computadoras fueran grandes, voluminosas y costosas porque los tubos tenían que ser continuamente reemplazados debido a que se quemaban con frecuencia. Hasta este tiempo, las computadoras fueron clasificadas por su dispositivo principal para el almacenaje en memoria. La UNIVAC I empleaba un ingenioso dispositivo llamado línea de demora de mercurio (mercury delay line), la cual dependía de pulsos de ultrasonido.

Segunda Generación de Computadoras:

1958 – Transistor

Las computadoras construidas con transistores marcan el comienzo de la segunda generación de los equipos de computadora.

1959 – IBM 1602

IBM introduce dos pequeñas computadoras de escritorio, a saber: la IBM 1401para negocios y la IBM 1602 para científicos

Tercera Generación de Computadoras:

1964 – IBM 360

La tercera generación de computadoras comenzó en el 1964 con la introducción de la IBM 360, la computadora que fue la pionera para el uso de circuitos integrados en un chip. En ese mismo año, los científicos de computadora desarrollaron circuitos integrados diminutos e instalaron cientos de estos transistores en un solo chip de silicón, el cual era tan pequeño como la punta de un dedo.

1965 – PDP-8

La “Digital Equipment Corporation” (DEC) introduce la primera minicomputadora, conocida como la PDP-8.

1968 – Alan Shugart

Alan Shugard en IBM demuestra el primer uso regular del Disco flexible de 8-pulgadas (disco de almacenaje magnético).

Cuarta Generación de Computadoras:

1968 – Gilbert Hyatt

El desarrollo de la tecnología de microprocesadores resultó en la cuarta generación. El 1968, Gilbert Hyatt diseño una computadora que tenía la capacidad de instalar un microchip de silicón del tamaño de una uña de dedo. Hayatt quería que el mundo lo reconociera como el inventor que revolucionó la computadora. Después de veinte años de batallas legales, la oficina de patentes y marcas en Estados Unidos Continentales le otorgó a Hyatt la patente No. 4,942.516 por un “Single Chip integrated Circuit Computer Architecture”.

1971 –Dr. Ted Hoff

En el 1971, el Dr., Ted Hoff, conjuntamente con un grupo de individuos trabajando en Intel Corporation, desarrollaron un microprocesador o un chip de computadora micro programable, conocido con el nombre de Intel 4004. Tal chip solo estaba destinado para calculadoras, puesto carecía de la potencia necesaria para que pudiera trabajar en una computadora.

Quinta Generación de Computadoras:

En la quinta generación, surgieron computadoras con chips de alta velocidad.

DIFERENCIA ENTRE LAS ÉPOCAS DE COMPÚTADORAS

1.1. PRIMERA GENERACIÓN: (1945-1956)

Esta generación se identifica por el hecho que la tecnología electrónica estaba basada en "tubos de vacío", más conocidos como bulbos electrónicos, del tamaño de un foco de luz casero. Los sistemas de bulbos podían multiplicar dos números de diez dígitos en un cuarentavo de segundo. El inicio de esta generación lo marca la entrega, al cliente. De la primera UNIVAC. que también es la primera computadora construida para aplicaciones comerciales, más que para uso miliar, científico o de ingeniería. En aquel entonces las computadoras ya manejaban información alfabética con la misma facilidad que la numérica y utilizaban el principio de separación entre los dispositivos de entrada-salida y la computadora misma. Lo revolucionario, con respecto a las máquinas de cálculo anteriores, consiste en que ahora el procesador electrónico puede tomar decisiones lógicas y, aplicándolas, podrá realizar o bien una operación u otra. Esto es posible, lógicamente, si el hombre a comunicado previamente a la máquina cómo de comportarse en los diferentes casos posibles.

SEGUNDA GENERACIÓN: (1957-1963)

Esta generación nace con el uso del "transistor", que sustituyó a los bulbos electrónicos. El invento del transistor, en 1948, les valió el Premio Nóbel a los estadounidenses Walter H. Brattain, John Bardeen y William B. Shockley. Con esto se da un paso decisivo, no sólo en la computación, sino en toda la electrónica. El transistor es un pequeño dispositivo que transfiere señales eléctricas a través de una resistencia. Entre las ventajas de los transistores sobre los bulbos se encuentran: su menor tamaño, no necesitan tiempo de calentamiento, consumen menos energía y son más rápidos y confiables.

Las características más relevantes de las computadoras de esta época son:

 Memoria principal mejorada constituida por núcleos magnéticos.

 Instalación de sistemas de teleproceso.

 Tiempo de operación del rango de microsegundos (realizan 100 000 instrucciones por segundo)

 Aparece el primer paquete de discos magnéticos removibles como medio de almacenaje (1962)

En cuanto a programación, se pasa de lenguajes máquina a lenguajes ensambladores, también llamados lenguajes simbólicos.

TERCERA GENERACIÓN: (1964-1971)

En esta época se desarrollan los circuitos integrados -un circuito electrónico completo sobre una pastilla (chip) de silicio-, que constaban inicialmente de la agrupación de unos cuantos transistores. Hechos de uno de los elementos más abundantes en la corteza terrestre, el silicio, una sustancia no metálica que se encuentra en la arena común de las playas y en prácticamente en todas las rocas y arcilla. Cada pastilla, de menos de 1/8 de pulgada cuadrada, contiene miles o millones de componentes electrónicos entre transistores, diodos y resistencias. El silicio es un semiconductor sustancia que conducirá la corriente eléctrica cuando ha sido "contaminada" con impurezas químicas. Los chips de circuitos integrados tienen la ventaja, respecto de los transistores, de ser más confiables, compactos y de menor costo. Las técnicas de producción masiva han hecho posible la manufactura de circuitos integrados de bajo costo.

Las características principales de estas computadoras son:

 Se sigue utilizando la memoria de núcleos magnéticos.

 Los tiempos de operación son del orden de nanosegundos (una mil millonésima parte de segundo)

 Aparece el disco magnético como medio de almacenamiento.

 Compatibilidad de información entre diferentes tipos de computadoras.

El siguiente desarrollo mayor se da con la Integración a gran escala (LSI de Large Scale Integration), que hizo posible aglutinar miles de transistores y dispositivos relacionados en un solo circuito integrado. Se producen dos dispositivos que revolucionan la tecnología computacional: el primero el microprocesador, un circuito integrado que incluye todas las unidades necesarias para funcionar como Unidad de Procesamiento Central y que conllevan la aparición de las microcomputadoras o computadoras personales, en 1968, y a la producción de terminales remotas "inteligentes". El otro dispositivo es la memoria de acceso aleatorio (RAM) por sus siglas en inglés.

Hasta 1970 las computadoras mejoraron dramáticamente en velocidad, confiabilidad y capacidad de almacenamiento. La llegada de la cuarta generación sería más una evolución que una revolución; al pasar del chip especializado para uso en la memoria y procesos lógicos del inicio de la tercera generación, al procesador de propósito general en un chip o microprocesador.

CUARTA GENERACIÓN: (1971-PRESENTE)

QUINTA GENERACIÓN: (PRESENTE-FUTURO)

El termino quinta generación fue acuñado por los japoneses para describir las potentes e "inteligentes" computadoras que deseaban producir a mediados de los noventa. La meta es organizar sistemas de computación que produzcan inferencias y no solamente realicen cálculos. En el proceso se han incorporado muchos campos de investigación en la industria de la computación, como la inteligencia artificial (IA), los sistemas expertos y el lenguaje natural.

Se distingue normalmente dos clases de entorno:

ENTORNO DE PROGRAMACION.- orientado a la construcción de sistemas, están formados por un conjunto de herramientas que asisten al programador en las distintas fases del ciclo de construcción del programa (edición, verificación, ejecución, corrección de errores, etc.)

ENTORNO DE UTILIZACIÓN.- orientado a facilitar la comunicación del usuario con el sistema. Este sistema está compuesto por herramientas que facilitan la comunicación hombre-máquina, sistemas de adquisición de datos, sistemas gráficos, etc.

Ejemplos concretos y explicación de la generación actual y las tendencias futuras.

Las características de los computadores de la generación actual quedan recibidas en el número de procesador (Pentium 4) el cual tiene una velocidad de procesamiento de 2.8 a 3.6 Giga hertz y los accesorios periféricos (de entrada y salida) tienen la características de ser de más fácil y más rápida instalación.

GENERACIONES ACTUALES

TENDENCIAS FUTURAS

Una tendencia constante en el desarrollo de los ordenadores es la micro miniaturización, iniciativa que tiende a comprimir más elementos de circuitos en un espacio de chip cada vez más pequeño. Además, los investigadores intentan agilizar el funcionamiento de los circuitos mediante el uso de la superconductividad, un fenómeno de disminución de la resistencia eléctrica que se observa cuando se enfrían los objetos a temperaturas muy bajas. Las redes informáticas se han vuelto cada vez más importantes en el desarrollo de la tecnología de computadoras. Las redes son grupos de computadoras interconectados mediante sistemas de comunicación.

La red pública Internet es un ejemplo de red informática planetaria. Las redes permiten que las computadoras conectadas intercambien rápidamente información y, en algunos casos, compartan una carga de trabajo, con lo que muchas computadoras pueden cooperar en la realización de una tarea. Se están desarrollando nuevas tecnologías de equipo físico y soporte lógico que acelerarán los dos procesos mencionados.

Otra tendencia en el desarrollo de computadoras es el esfuerzo para crear computadoras de quinta generación, capaces de resolver problemas complejos en formas que pudieran llegar a considerarse creativas. Una vía que se está explorando activamente es el ordenador de proceso paralelo, que emplea muchos chips para realizar varias tareas diferentes al mismo tiempo.

El proceso paralelo podría llegar a reproducir hasta cierto punto las complejas funciones de realimentación, aproximación y evaluación que caracterizan al pensamiento humano.

Otra forma de proceso paralelo que se está investigando es el uso de computadoras moleculares. En estas computadoras, los símbolos lógicos se expresan por unidades químicas de ADN en vez de por el flujo de electrones habitual en las computadoras corrientes. Las computadoras moleculares podrían llegar a resolver problemas complicados mucho más rápidamente que las actuales supercomputadoras y consumir mucha menos energía.

Ejemplo: Micro miniaturización: este circuito integrado, un microprocesador F-100, tiene sólo 0,6 cm2, y es lo bastante pequeño para pasar por el ojo de una aguja.

Definir, explicar y diferenciar:

 Clone: es un tipo de computador de escritorio que tiene todos los periféricos de una estación normal. Sin embargo sus componentes no pertenecen a una marca como tal, es decir no es un modelo específico, generalmente se arman y configuran de acuerdo a las necesidades del cliente por lo que sus partes son de las marcas preferidas por el usuario. Este tipo de equipo tiene la ventaja de ser más económico pero su mayor desventaja es que estos tipos de computadores no cuentan con una garantía en caso de daño total o parcial. También pueden ser portátiles, horizontales y verticales.

 Computador tipo desktop: es la comúnmente llamada PC de escritorio, es una estación que cuenta con todos los periféricos en unidades diferentes, el CPU es una unidad, y los dispositivos de entrada y salida son en su mayoría externos, por ejemplo el monitor, el teclado el mouse y las impresoras. Dado su diseño no son de fácil transporte, y están más bien diseñadas para estar en una posición fijas, sin embargo esto se ve compensado al tener una mayor capacidad de proceso y prestaciones. Su principal característica es que la forma de su chasis es horizontal y por lo tanto ocupa un espacio menor.

 Computador tipo torre: se les conoce como computador de tipo Torre a los computadores que están armadas dentro de un chasis vertical, la tarjeta madre esta atornillada a uno de los laterales. La principal ventaja de este tipo de chasis es que ocupan menor espacio y su principal desventaja es que deben colocarse sobre una superficie estable, de lo contrario se dificulta el equilibrio. Se prefieren los chasis de tipo torre sobre los de tipo horizontal ya que generalmente presentan mayores posibilidades de expansión en lo que a bahías se refiere.

 Computador portátil: es una unidad compacta que tiene incorporados los dispositivos de entrada y salida más comunes que los computadores de escritorio (teclado, mouse, monitor y parlantes), en una chasis pequeño y practico que permite el fácil transporte lo que le da el nombre de portátil. Sin embargo debido al espacio reducido se prescinde de algunos componentes que hacen que el desempeño con respecto a las computadoras de escritorio sea algo menos, aunque en la actualidad se diseñan procesadores específicos para equipos portátiles que permiten obtener rendimientos bastante similares.

QUÉ ES EL BILBO

Bulbo es un componente electrónico utilizado para amplificar, conmutar, o modificar una señal eléctrica mediante el control del movimiento de los electrones en un espacio "vacío" a muy baja presión, o en presencia de gases especialmente seleccionados. La válvula originaria fue el componente crítico que posibilitó el desarrollo de la electrónica durante la primera mitad del siglo XX, incluyendo la expansión y comercialización de la radiodifusión, televisión, radar, audio, redes telefónicas, computadoras analógicas y digitales, control industrial, etc. Algunas de estas aplicaciones son anteriores a la válvula, pero vivieron un crecimiento explosivo gracias a ella. A lo largo de su historia, fueron introducidos muchísimos tipos de válvulas, pero los principios de funcionamiento básicos son:

Efecto Edison. La gran mayoría de las válvulas electrónicas están basadas en la propiedad que tienen los metales en caliente de liberar electrones desde su superficie. Gases ionizados. En otros casos, se utilizan las características de la conducción electrónica en gases ionizados, esto resulta principalmente importante en los reguladores de tensión, rectificadores de vapor de mercurio, válvula de conmutación T/R, etc. Efecto fotoeléctrico En otros casos, el principio de funcionamiento se basa en la emisión de electrones por el efecto fotoeléctrico.

SISTEMA OPERATIVO MONOUSUARIO

Monousuarios

Los sistemas operativos monousuarios son aquellos que soportan a un solo usuario a la vez, sin importar el número de procesadores que tenga la computadora o el número de procesos o tareas que el usuario pueda ejecutar en un mismo instante de tiempo, las computadoras personales típicamente se han clasificado en este renglón.

Multiusuarios:

Los sistemas operativos multiusuarios son capaces de dar servicio a más de un usuario a la vez, ya sea por medio de varias terminales conectadas a la computadora o por medio de sesiones remotas en una red de comunicaciones, ni importa el número de procesadores en la maquina ni el número de procesos que cada usuario puede ejecutar simultáneamente.

Mono tareas:

Los sistemas Mono tareas son aquellos que solo permiten una tarea a la vez por el usuario. Puede darse el caso de un sistema multiusuario y monotarea, en el cual se admiten varios usuarios al mismo tiempo pero cada uno de ellos puede estar haciendo solo una tarea la vez.

MULTITAREAS

La multitarea es la característica de los sistemas operativos modernos de permitir que varios procesos se ejecuten —al parecer— al mismo tiempo compartiendo uno o más procesadores. Los sistemas operativos multitarea son capaces de dar servicio a más de un proceso a la vez para permitir la ejecución de muchos más programas.

En esta categoría también se encuentran todos los sistemas que cumplen simultáneamente las necesidades de dos o más usuarios —llamados sistemas multiusuario— que compartan los mismos recursos. Este tipo de sistemas se emplea especialmente en redes. En resumen, se trata de fraccionamiento del tiempo («timesharing» en inglés).

TELECOMUNICACION

El concepto de telecomunicación abarca todas las formas de comunicación a distancia. La palabra incluye el prefijo griego tele, que significa “distancia” o “lejos”. Por lo tanto, la telecomunicación es una técnica que consiste en la transmisión de un mensaje desde un punto hacia otro, usualmente con la característica adicional de ser bidireccional. La telefonía, la radio, la televisión y la transmisión de datos a través de computadoras son parte del sector de las telecomunicaciones.

Dentro del ámbito de las telecomunicaciones es importante que se conozca la importancia de la variedad del material físico que se utiliza en las mismas. De él, de su calidad y de sus prestaciones, depende el éxito del proceso y en este sentido ello conlleva a que sea necesario el estudio de una serie de pautas y criterios para apostar por el material más adecuado. En concreto, los expertos en dicha área tienen que proceder a analizar concienzudamente lo que son los costos, la seguridad, la capacidad que tiene, los errores que puede traer consigo o también la facilidad de uso que tiene. Una telecomunicación es toda transmisión y recepción de señales de cualquier naturaleza, típicamente electromagnéticas, que contengan signos, sonidos, imágenes o, en definitiva, cualquier tipo de información que se desee comunicar a cierta distancia.

ROBÓTICA

La robótica es la rama de la tecnología que se dedica al diseño, construcción, operación, disposición estructural, manufactura y aplicación de los robots. La robótica combina diversas disciplinas como son: la mecánica, la electrónica, la informática, la inteligencia artificial, la ingeniería de control y la física.3 Otras áreas importantes en robótica son el álgebra, los autómatas programables, la anima trónica y las máquinas de estados. La robótica es una ciencia o rama de la tecnología, que estudia el diseño y construcción de máquinas capaces de desempeñar tareas realizadas por el ser humano o que requieren del uso de inteligencia. Las ciencias y tecnologías de las que deriva podrían ser: el álgebra, los autómatas programables, las máquinas de estados, la mecánica o la informática.

INTELIGENCIA ARTIFICIAL

La inteligencia artificial es considerada una rama de la computación y relaciona un fenómeno natural con una analogía artificial a través de programas de computador. La inteligencia artificial puede ser tomada como ciencia si se enfoca hacia la elaboración de programas basados en comparaciones con la eficiencia del hombre, contribuyendo a un mayor entendimiento del conocimiento humano.

Si por otro lado es tomada como ingeniería, basada en una relación deseable de entrada-salida para sintetizar un programa de computador. "El resultado es un programa de alta eficiencia que funciona como una poderosa herramienta para quien la utiliza."

A través de la inteligencia artificial se han desarrollado los sistemas expertos que pueden imitar la capacidad mental del hombre y relacionan reglas de sintaxis del lenguaje hablado y escrito sobre la base de la experiencia, para luego hacer juicios acerca de un problema, cuya solución se logra con mejores juicios y más rápidamente que el ser humano. En la medicina tiene gran utilidad al acertar el 85 % de los casos de diagnóstico.

La inteligencia artificial (IA) es un área multidisciplinaria que, a través de ciencias como la informática, la lógica y la filosofía, estudia la creación y diseño de entidades capaces de razonar por sí mismas utilizando como paradigma la inteligencia humana. General y amplio como eso, reúne a amplios campos, los cuales tienen en común la creación de máquinas capaces de pensar. En ciencias de la computación se denomina inteligencia artificial a la capacidad de razonar de un agente no vivo. John McCarthy acuñó la expresión «inteligencia artificial» en 1956, y la definió así: “Es la ciencia e ingenio de hacer máquinas inteligentes, especialmente programas de cómputo inteligentes.

TARJETA MADRE

Una tarjeta madre es la central o primaria tarjeta de circuito de un sistema de cómputo u otro sistema electrónico complejo. Una computadora típica con el microprocesador, memoria principal, y otros componentes básicos de la tarjeta madre. Otros componentes de la computadora tal como almacenamiento externo, circuitos de control para video y sonido, y dispositivos periféricos son unidos a la tarjeta madre vía conectores o cables de alguna clase. La tarjeta madre es el componente principal de un computador personal. Es el componente que integra a todos los demás. Escoger la correcta puede ser difícil ya que existen miles. Estos son los elementos que se deben considerar:

El Procesador

Este es el cerebro del computador. Dependiendo del tipo de procesador y su velocidad se obtendrá un mejor o peor rendimiento. Hoy en día existen varias marcas y tipos, de los cuales intentaré darles una idea de sus características principales. Las familias (tipos) de procesadores compatibles con el PC de IBM usan procesadores x86. Esto quiere decir que hay procesadores 286, 386, 486, 586 y 686. Ahora, a Intel se le ocurrió que su procesador 586 no se llamaría así sino "Pentium", por razones de mercadeo.

Memoria Cache

La memoria cache forma parte de la tarjeta madre y del procesador (Hay dos tipos) y se utiliza para acceder rápidamente a la información que utiliza el procesador. Existen cache primario (L1) y cache secundario (L2). El cache primario está definido por el procesador y no lo podemos quitar o poner. En cambio el cache secundario se puede añadir a la tarjeta madre. La regla de mano es que si se tienen 8 Megabytes (Mb) de memoria RAM se debe tener 128 Kilobytes (Kb) de cache. Si se tiene 16 Mb son 256 Kb y si se tiene 32 Mb son 512 Kb. Parece que en adelante no se observa mucha mejoría al ir aumentando el tamaño del cache. Los Pentium II tienen el cache secundario incluido en el procesador y este es normalmente de 512 Kb.

La placa base, también conocida como placa madre o placa principal (en inglés motherboard o mainboard) es una tarjeta de circuito impreso a la que se conectan los componentes que constituyen la computadora. Es una parte fundamental para armar cualquier computadora personal de escritorio o portátil. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el circuito integrado auxiliar (chipset), que sirve como centro de conexión entre el microprocesador (CPU), la memoria de acceso aleatorio (RAM), las ranuras de expansión y otros.

PARTES QUE ESTAN CONECTADAS A UNA TARJETA MADRE

1. Zócalo de conexión para el microprocesador

Ya explicamos que la función fundamental de la tarjeta madre es el manejo de las comunicaciones desde y hacia el microprocesador. Por lo tanto, para que se dé esta comunicación, debe existir un medio de interconexión entre ambos dispositivos; este medio físico es el zócalo o socket. Es en este conector, es donde se aloja el microprocesador.

2. Chipset

El chipset, es circuito integrado que se encarga de manejar todas las señales lógicas que van al microprocesador o salen de este dispositivo.

3. Zócalos de conexión para la memoria RAM

La memoria RAM (Random Access Memory, memoria de acceso aleatorio) es el almacén temporal de datos del microprocesador; ahí toma y deposita la información numérica (instrucciones o datos de trabajo) que precisa para sus operaciones; los datos sólo se mantienen mientras la computadora esté alimentada de energía eléctrica, y por ello se pierden cuando el equipo se apaga (tener presente que el dispositivo de base donde se mantiene grabada la información aunque se interrumpa la energía eléctrica, es el disco duro).

4. Ranuras de expansión

Ya hemos dicho que una de las razones principales del gran éxito de las PC, es su enorme capacidad de crecimiento, que a su vez descansa en las tarjetas auxiliares que se conectan en ranuras de expansión (slots) especiales. En la actualidad, existen cuatro tipos de ranuras de expansión comunes, aunque ha habido otros estándares que ya no se utilizan:

Ranura AGP. Esta ranura, especialmente diseñada para conectar la tarjeta de video, posee la suficiente velocidad y ancho de banda como para manejar el enorme flujo de datos que requieren las modernas aplicaciones multimedia; por ejemplo, los juegos o las películas en DVD o los archivos VCD.

Ranura PCI. Es la ranura de expansión que más se utiliza en la actualidad, porque proporciona una adecuada velocidad de transferencia de datos sin grandes costos.

Ranura ISA-16. Se trata de un verdadero "fósil viviente", porque apareció con la segunda generación de computadoras personales; y desde entonces, fue un estándar usual para casi todos los sistemas de tercera, cuarta e incluso quinta generación (aunque con ésta, aparece la ranura PCI).

Ranura CNR. Estándar propuesto por Intel, para facilitar la conexión de un módem con una tarjeta de audio (CNR son las siglas de Communications Rising Card o "tarjeta para comunicaciones").

5. Conectores para discos

Todavía en las PC de cuarta generación, se usaba una tarjeta periférica que tenía la función de controlar la comunicación desde y hacia las unidades de disco (disquete, disco duro, CD-ROM, etc.). Pero a partir de las máquinas de quinta generación, esta interfaz se incluyó en la propia placa base; por tal motivo, ahora los discos se conectan directamente a la motherboard.

6. Puertos I/O

Para comunicarse con elementos externos, la plataforma PC dispone de una amplia variedad de puertos de entrada y salida de datos. Se conocen genéricamente como "puertos I/ O".

QUE ES UN PROCESADOR

El procesador es el dispositivo que se encarga de llevar a cabo las tareas necesarias para que puedas utilizar tus aplicaciones y programas. Lo puedes considerar el cerebro de tu PC.

Una aplicación una vez instalada en el disco duro tiene dos componentes básicos. Los datos, por ejemplo dibujos, fotografías, sonidos, vídeos y las instrucciones que son las encargadas de trabajar con esos datos.

La función del micro es por tanto, estar atento a la información que le llega por parte del usuario a través de teclado y ratón y actuar procesando las instrucciones que forman parte de la aplicación que estés usando en un momento determinado.

Elementos básicos que conforman un procesador moderno

En un procesador puedes encontrar los siguientes elementos:

 Núcleos. Una delas mejoras en las tecnologías de fabricación de los procesadores lo que ha conseguido es aumentar el número de transistores que pueden los fabricantes crear por unidad de área. Un mayor número de ellos conlleva que se puedan integrar más elementos. Los fabricantes gracias a esto han añadido varios núcleos en un mismo procesador. Cada uno de estos elementos no es más que un procesador pero reducido en tamaño. Al tener varios ciertas tareas se pueden acelerar al trabajar en paralelo.

 Cache. Es muy importante, para las prestaciones que el micro es capaz de dar, acelerar el uso de los accesos a memoria RAM. Ten en cuenta que en ella se encuentran tanto los datos como las instrucciones de los programas con los que estés trabajando. Un procesador tiene varios niveles de memoria cache pensada para acelerar estos accesos. Su idea de funcionamiento es sencilla, se almacenan en ella los datos e instrucciones a los que se accede más frecuentemente y al estar cerca del procesador el acceso es más rápido. Fuera del núcleo nos encontramos con la denominada LLC (Last level cache) que dependiendo del modelo es la tercera o segunda capa.

Partes principales de un procesador (partes que lo conforman)

Partes lógicas

 La Unidad Central de Procesamiento (CPU) es el cerebro del ordenador. Su función es ejecutar programas almacenados en la memoria RAM tomando sus instrucciones, examinándolas y luego ejecutándolas una tras otra. La CPU se compone de varias partes:

 Unidad de Control: Es la encargada de activar o desactivar los diversos componentes del microprocesador en función de la instrucción que el microprocesador esté ejecutando y en función también de la etapa de dicha instrucción que se esté ejecutando. La unidad de control (UC) interpreta y ejecuta las instrucciones almacenadas en la memoria principal y genera las señales de control necesarias para ejecutarlas.

 Unidad Aritmética y Lógica: Es la que se encargará de realizar todas las operaciones que transforman los datos, en especial operaciones matemáticas como la suma y la resta y tomar decisiones lógicas. El coprocesador matemático: o, más correctamente, la FPU (Floating Point Unit, Unidad de coma Flotante).

 Los registros: El procesador necesita para su funcionamiento de ciertas áreas de almacenamiento de forma temporal, durantela ejecución de las instrucciones, que aquí se llaman registros, y que son de dimensiones mínimas ; sin embargo, tienen la ventaja de ser extremadamente rápidos. Comparados con los accesos a RAM, los de registro son como mínimo 10 veces más veloces

 Concepto de Hardware: Son todos los dispositivos y componentes físicos que realizan las tareas de entrada y salida, también se conoce al hardware como la parte dura o física del computador. La mayoría de las computadoras están organizadas de la siguiente forma:

Los dispositivos de entrada (Teclados, Lectores de Tarjetas, Lápices Ópticos, Lectores de Códigos de Barra, Escáner, Mouse, etc.) y salida (Monitor, Impresoras, Plotters, Parlantes, etc.) y permiten la comunicación entre el computador y el usuario.

 La arquitectura de la computadora

La arquitectura de computadoras es el diseño conceptual y la estructura operacional fundamental de un sistema de computadora. Es decir, es un modelo y una descripción funcional de los requerimientos y las implementaciones de diseño para varias partes de una computadora, con especial interés en la forma en que la unidad central de proceso (cpu) trabaja internamente y accede a las direcciones de memoria.

También suele definirse como la forma de seleccionar e interconectar componentes de hardware para crear computadoras según los requerimientos de funcionalidad, rendimiento y costo.

El ordenador recibe y envía la información a través de los periféricos por medio de los canales. La UCP es la encargada de procesar la información que le llega al ordenador. El intercambio de información se tiene que hacer con los periféricos y la UCP. Todas aquellas unidades de un sistema exceptuando la UCP se denomina periférico, por lo que el ordenador tiene dos partes bien diferenciadas, que son: la UCP (encargada de ejecutar programas y que está compuesta por la memoria principal, la Unidad aritmético. lógica (UAL) y la Unidad de Control) y los periféricos (que pueden ser de entrada, salida, entrada-salida y comunicaciones).

 Componentes de una computadora

En términos simples y sencillos, una computadora es un sistema informático compuesto por varios componentes electrónicos que trabajan en conjunto para proporcionar datos de salida procesados. Estos componentes conforman el llamado hardware, y son los encargados de procesar todas las instrucciones que proporciona el software con el cual está cargada la computadora.

En este artículo conoceremos un poco más a fondo el hardware y las funciones que cumple cada uno de estos componentes dentro de la PC.

 Unidad del sistema o gabinete

La unidad del sistema o gabinete es el núcleo de un sistema informático. Normalmente, se trata de una caja rectangular. En el interior de esta caja se encuentran muchos componentes electrónicos que procesan información. El más importante de estos componentes es la CPU (unidad central de procesamiento), o microprocesador, que funciona como "cerebro" de la computadora.

Otro componente es la memoria RAM (random access memory), que almacena temporalmente la información utilizada por la CPU mientras la computadora está siendo usada. La información almacenada en la memoria RAM es borrada cuando la computadora se apaga.

Prácticamente todos los otros componentes de una computadora están conectados por cables a la unidad del sistema. Los cables se encuentran conectados a las entradas (puertos) específicos, que se encuentran normalmente en la parte posterior de la unidad de sistema. El hardware que no forma parte de la unidad de sistema es, a veces, llamado dispositivo externo o periférico.

 Almacenamiento

La computadora tiene una o más unidades de disco (dispositivos que almacenan información en un disco de metal o plástico). El disco guarda la información pese a que la computadora esté apagada.

 Unidad de disco duro

La unidad de disco rígido de la computadora almacena información en un disco duro, un disco o una pila de discos duros con una superficie magnética. Ya que los discos duros pueden contener grandes cantidades de información, estos sirven normalmente como soporte de almacenamiento principal de la computadora, almacenando prácticamente todos los programas y archivos. La unidad de disco duro se encuentra normalmente en el interior de la unidad de sistema.

 Unidades de CD, DVD y Blu-Ray

Prácticamente todos las computadoras actuales están equipados con una unidad de CD o DVD normalmente localizada en la parte frontal de la unidad de sistema, las unidades ópticas utilizan lásers para leer y escribir datos de un CD, DVD o Blu-Ray. Si tiene una unidad de disco grabable, puede guardar copias de los archivos en soportes ópticos vírgenes. También puede usar la unidad de CD para reproducir CDs de música en la computadora.

Las unidades de DVD pueden hacer todo lo que las unidades de CD hacen y, además de eso, pueden leer DVDs. Si tiene una unidad de DVD, puede ver películas en la computadora. En la actualidad todas las unidades de DVD pueden grabar datos en DVDs vírgenes.

Si tuviera una unidad grabadora de CD o DVD, realice periódicamente copias de seguridad de los archivos importantes en CDs o DVDs. De esta forma, si el disco rígido falla o se rompe, no perderá datos.

En cuanto a las unidades de Blu-Ray, estas son más modernas y por lo tanto no tan extendidas en el mercado, pero pueden ser capaces de almacenar hasta 50 Gb. de datos en un disco de doble capa.

 Mouse (ratón)

El mouse es un pequeño dispositivo utilizando para apuntar y seleccionar ítems. A pesar de que los mouses tengan varias formas, el mouse típico tiene un aspecto que se parece a un ratón, de ahí su nombre. Es pequeño, redondeado y está conectado a la unidad de sistema por un cable. Algunos mouses más modernos son inalámbricos.

Normalmente, un mouse tiene dos botones: el botón principal (normalmente el botón izquierdo) y un botón secundario. Muchos mouses también tienen una rueda entre los dos botones, lo que permite un fácil desplazamiento del mismo.

Cuando se mueve el mouse con la mano, un puntero existente en el monitor se mueve en la misma dirección. (El aspecto del puntero puede cambiar, dependiendo del posicionamiento en el monitor) Cuando quieras seleccionar un ítem, solo debes apuntar hacia el ítem y cliquear (oprimir y soltar) el botón principal. Apuntar y cliquear con el mouse es la forma principal de interactuar con la computadora.

 Teclado

El teclado es principalmente utilizado para escribir textos en la computadora. Tal como el teclado de una máquina de escribir, el teclado de la computadora tiene teclas con letras y números, pero también posee teclas especiales:

Las teclas de función, localizadas en la línea superior, efectúan funciones diferentes dependiendo del modo en el que son utilizadas.

El teclado numérico, localizado en el lado derecho de la mayor parte de los teclados, permite introducir números rápidamente.

Las teclas de navegación, tales como las teclas de flecha, permiten cambiar el posicionamiento en un documento o página web.

Cabe destacar que también se puede utilizar el teclado para efectuar muchas de las funciones que se pueden efectuar con el mouse.

 Monitor

El monitor presenta información en forma visual, utilizando texto y gráficos. La parte del monitor que presenta la información es llamada pantalla. Tal como la pantalla de un televisor, la de una computadora puede mostrar imágenes fijas o en movimiento.

Existen dos tipos básicos de monitores: Monitores CRT (Cathode Ray Tube, ya casi en desuso) y monitores LCD (Liquid Crystal Display). Ambos tipos producen imágenes nítidas, pero los monitores LCD tienen la ventaja de ser mucho más delgados y livianos.

 Impresora

Una impresora transfiere datos de la computadora al papel. No es necesario tener una impresora para poder usar la computadora, pero si tienes una, podrás imprimir mensajes de correo electrónico, tarjetas, invitaciones, anuncios y cualquier otro material. Muchas personas también aprovechan la posibilidad de poder imprimir fotos en casa.

Los dos tipos principales de impresión son las impresoras a chorro de tinta y las impresoras láser. Las impresoras a chorro de tinta son las impresoras más usadas. Estas impresoras permiten imprimir en blanco y negro o a color y pueden imprimir fotografías de alta calidad, utilizando un papel fotográfico especial. Las impresoras láser son más rápidas y soportan mejor un uso más intensivo.

 Altavoces o parlantes

Los parlantes son utilizados para reproducir sonidos. Los parlantes pueden estar integrados a la unidad de sistema o conectados a esta por medio de cables. Los parlantes permiten escuchar música y los efectos de sonidos producidos por la computadora.

 Módem

Para conectar la computadora a Internet, necesitas de un módem. Un módem es un dispositivo que envía y recibe información a través de una línea telefónica o cable de alta velocidad. Los modems a veces vienen integrados en la unidad de sistema, pero no son los más veloces. En la actualidad, este tipo de dispositivos ya no se utilizan, siendo reemplazados por los modernos módems externos ADSL o de cable, los cuales también incorporan características de Router.

...

Descargar como  txt (44.5 Kb)  
Leer 27 páginas más »
txt