CÓDIGO BINARIO
guerrera19821 de Febrero de 2013
4.074 Palabras (17 Páginas)1.610 Visitas
Sistema Y Código Binario
Código binario
El código binario es el sistema de representación de textos, o procesadores de instrucciones de ordenador utilizando el sistema binario (sistema numérico de dos dígitos, o bit: el "0" y el "1" . En informática y telecomunicaciones, el código binario se utiliza con variados métodos de codificación de datos, tales como cadenas de caracteres, o cadenas de bits. Estos métodos pueden ser de ancho fijo o ancho variable.
En un código binario de ancho fijo, cada letra, dígito, u otros símbolos, están representados por una cadena de bits de la misma longitud, como un número binario que, por lo general, aparece en las tablas en notación octal, decimal o hexadecimal.
Según Anton Glaser, en su History of Binary and other Nondecimal Numeration, comenta que los primeros códigos binarios se utilizaron en el año 1932: C.E. Wynn-Williams ("Scale of Two" , posteriormente en 1938: Atanasoff-Berry Computer, y en 1939: Stibitz ("excess three" el código en Complex Computer.
Características del código binario
Ponderación
La mayoría de los sistemas de numeración actuales son ponderados, es decir, cada posición de una secuencia de dígitos tiene asociado un peso. El sistema binario es, de hecho, un sistema de numeración posicional ponderado. Sin embargo, algunos códigos binarios, como el código Gray, no son ponderados, es decir, no tienen un peso asociado a cada posición. Otros, como el mismo código binario natural o el BCD natural sí lo son.
Distancia
La distancia es una característica sólo aplicable a las combinaciones binarias. La distancia entre dos combinaciones es el número de bits que cambian de una a otra. Por ejemplo, si se tienen las combinaciones de cuatro bits 0010 y 0111, correspondientes al 2 y al 7 en binario natural, se dirá que la distancia entre ellas es igual a dos (ya que de una a otra cambian dos bits).
Además, con el concepto de distancia se puede definir la distancia mínima de un código. Ésta no es más que la distancia menor que haya entre dos de las combinaciones de ese código.
La distancia es una característica que, además, sólo aplica las combinaciones binarias. En resumen, la distancia entre dos combinaciones es el número de bits que cambian de una a otra.
Continuidad
La continuidad es una característica de los códigos binarios que cumplen que todas las posibles combinaciones del código son adyacentes, es decir, que de cualquier combinación del código a la siguiente cambia un sólo bit. En este caso se dice que el código es continuo. Cuando la última combinación del código es, a su vez, adyacente a la primera, se trata de un código cíclico.
Autocomplementariedad
Se dice que un código binario es autocomplementario cuando el complemento a nueve del equivalente decimal de cualquier combinación del código puede hallarse invirtiendo los valores de cada uno de los bits (operación lógica unaria de negación) y el resultado sigue siendo una combinación válida en ese código. Esta característica se observa en algunos códigos BCD, como el código Aiken o el código BCD exceso 3. Los códigos autocomplementarios facilitan las operaciones aritméticas.
Códigos detectores de error
Los códigos detectores de error y los códigos correctores de error, surgen como solución al problema de la transmisión de datos por medio de impulsos eléctricos. Existen diferentes factores que pueden provocar un cambio en la señal eléctrica en un instante determinado, por lo que, de producirse esto, los datos binarios que están siendo transferidos pueden verse alterados. El propósito de los códigos detectores de error es detectar posibles errores en los datos, mientras que los códigos detectores y correctores de error no sólo pretenden detectar errores, sino también corregirlos. Existen diferentes métodos de detección de errores, el más usado es, posiblemente, el método del bit de paridad. En cuanto a los códigos correctores, destacan algunos como el código de Hamming.
Sistema Binario
El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
Historia del sistema binario
El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo III a. C.
Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bit) y números binarios de 6 bit eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizadas en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
Aplicaciones
En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.
En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó una computadora basada en relés —a la cual apodó "Modelo K" (porque la construyó en una cocina, en inglés "kitchen" — que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando. El 8 de enero de 1940 terminaron el diseño de una "Calculadora de Números Complejos", la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John Von Neumann, John Mauchly y Norbert Wiener, quien escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.
Representación
Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de estar en dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario:
1 0 1 0 0 1 1 0 1 0
| - | - - | | - | -
x o x o o x x o x o
y n y n n y y n y n
El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En una computadora, los valores numéricos pueden representar dos voltajes diferentes; también pueden indicar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la nomenclatura usada.
De acuerdo con la representación más habitual, que es usando números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Los números binarios se escriben a menudo con subíndices, prefijos o sufijos para indicar su base. Las notaciones siguientes son equivalentes:
100101 binario (declaración explícita de formato)
100101b (un sufijo que indica formato binario)
100101B (un sufijo que indica formato binario)
bin 100101 (un prefijo que indica formato binario)
1001012 (un subíndice que indica base 2 (binaria) notación)
%100101 (un prefijo que indica formato binario)
0b100101 (un prefijo que indica formato binario, común en lenguajes de programación)
Conversión entre binario y decimal
Decimal a binario
Se
...