ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Magnetron


Enviado por   •  5 de Octubre de 2014  •  1.465 Palabras (6 Páginas)  •  149 Visitas

Página 1 de 6

XXVI. EL MAGNETRÓN. LAS MICROONDAS

A PESAR de que el radar ayudó a los ingleses a ganar la Batalla de Inglaterra, desde el inicio sus inventores se dieron cuenta de que tenía serias desventajas, que se hicieron manifiestas durante las batallas de 1940.

En primer lugar, por su tamaño, el radar no se podía llevar en avión; como se recordará, la antena necesitaba una longitud de 25 m aproximadamente.

En segundo lugar, el haz de ondas electromagnéticas emitidas por las antenas tenía cierta anchura y lo único que se podía informar a los pilotos es que dentro de esa anchura se había detectado un enemigo. Sin embargo, esta anchura abarcaba una distancia de alrededor de 100 m, tanto hacia arriba como hacia abajo, a partir del centro. Durante el día no había problema, ya que una vez situado el avión en el centro de la pantalla del radar el aviador podía buscar visualmente dónde se encontraba el enemigo. Pero en la noche esto no funcionaba, la única forma de atacar un avión enemigo era tenerlo a una distancia muy pequeña y no a cien metros.

Para vencer este obstáculo era necesario utilizar ondas electromagnéticas de longitudes de onda que no fueran de decenas de metros, sino de algunos metros, o todavía mejor, de centímetros, es decir, longitudes de onda extremadamente pequeñas, lo que significa ondas de muy altas frecuencias. Con estas longitudes de onda es posible detectar objetos muy cercanos. A estas ondas se le llama microondas.

Había varias ventajas si se usaban longitudes de onda más pequeñas: una era que la anchura del haz disminuye con la longitud de onda y por tanto se podría detectar con más precisión al enemigo; otra, que la antena sería mucho más pequeña y que el radar podría llevarse en el avión.

Por otro lado, con el equipo de que se disponía en esa época, a medida que se disminuía la longitud de onda, disminuía también la potencia de la onda emitida, lo cual era muy inconveniente.

Trataron de resolver este problema de una forma completamente distinta. Después de sortear varios obstáculos políticos que no viene al caso discutir aquí, se asignó el proyecto de investigación al profesor Mark Oliphant, del entonces recién creado Departamento de Física de la Universidad de Birmingham. Éste a su vez invitó al profesor John Randall y al estudiante Henry Boot. El grupo empezó a analizar el problema en el verano de 1939. Necesitaban inventar un dispositivo que pudiera generar ondas de muy altas frecuencias.

Encontraron que en 1916 un joven estadounidense, Albert W. Hull, que había estudiado física y literatura griega en la Universidad de Yale, había inventado el magnetrón cuando trabajaba en el laboratorio de investigación de la General Electric. Se encontraba en ese proyecto porque como la compañía ATT había demandado judicialmente la patente del tubo al vacío que había presentado la General Electric, esta última quería encontrar alguna opción, en tanto se dirimía el problema legal.

Como se recordará (véase el capítulo XX) en un triodo el flujo de electrones entre el cátodo (donde se generan los electrones) y el ánodo (que los recibe) se controla por medio de la carga eléctrica aplicada en la rejilla que se encuentra entre los elementos mencionados. Según el voltaje que se aplique a la rejilla, el flujo puede pasar, inhibirse o suspenderse completamente. Hull pensó en la posibilidad de controlar este flujo por medio de un campo magnético. Se le ocurrió un dispositivo con un cátodo formado por un cilindro metálico (Figura 45) en el centro, y el ánodo formado por otro cilindro hueco, también metálico, concéntrico con el anterior, entre los que se establece un voltaje por medio de una batería. El campo magnético lo estableció paralelo al eje del conjunto. Así, un electrón que saliera del cátodo, en lugar de seguir una línea directa hacia el ánodo, como ocurre en el triodo, seguiría, debido al campo magnético, una trayectoria en espiral. Dependiendo de las características del campo, como su intensidad y la forma en que varíe con el tiempo, estas espirales pueden tomar muchas formas. Puede que algunas partan del cátodo pero no lleguen al ánodo, con lo que, en este caso, el flujo de electrones será suspendido. Vemos así que la corriente eléctrica entre los elementos puede ser controlada por el campo magnético, y por tanto, este dispositivo, al que se le llamó magnetrón, funciona como un triodo.

Figura 45. En un magnetrón un campo magnético a lo largo del eje modifica la trayectoria

...

Descargar como (para miembros actualizados)  txt (9 Kb)  
Leer 5 páginas más »
Disponible sólo en Clubensayos.com