ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Programación dinámica

luise77020624 de Mayo de 2013

802 Palabras (4 Páginas)437 Visitas

Página 1 de 4

En informática, la programación dinámica es un método para reducir el tiempo de ejecución de un algoritmo mediante la utilización de subproblemas superpuestos y subestructuras óptimas, como se describe a continuación.

El matemático Richard Bellman inventó la programación dinámica en 1953 que se utiliza para optimizar problemas complejos que pueden ser discretizados y secuencializados.

Una subestructura óptima significa que se pueden usar soluciones óptimas de subproblemas para encontrar la solución óptima del problema en su conjunto. Por ejemplo, el camino más corto entre dos vértices de un grafo se puede encontrar calculando primero el camino más corto al objetivo desde todos los vértices adyacentes al de partida, y después usando estas soluciones para elegir el mejor camino de todos ellos. En general, se pueden resolver problemas con subestructuras óptimas siguiendo estos tres pasos:

Dividir el problema en subproblemas más pequeños.

Resolver estos problemas de manera óptima usando este proceso de tres pasos recursivamente.

Usar estas soluciones óptimas para construir una solución óptima al problema original.

Los subproblemas se resuelven a su vez dividiéndolos en subproblemas más pequeños hasta que se alcance el caso fácil, donde la solución al problema es trivial.

Decir que un problema tiene subproblemas superpuestos es decir que se usa un mismo subproblema para resolver diferentes problemas mayores. Por ejemplo, en la sucesión de Fibonacci (F3 = F1 + F2 y F4 = F2 + F3) calcular cada término supone calcular F2. Como para calcular F5 hacen falta tanto F3 como F4, una mala implementación para calcular F5 acabará calculando F2 dos o más veces. Esto sucede siempre que haya subproblemas superpuestos: una mala implementación puede acabar desperdiciando tiempo recalculando las soluciones óptimas a problemas que ya han sido resueltos anteriormente.

Esto se puede evitar guardando las soluciones que ya hemos calculado. Entonces, si necesitamos resolver el mismo problema más tarde, podemos obtener la solución de la lista de soluciones calculadas y reutilizarla. Este acercamiento al problema se llama memoización (no confundir con memorización; en inglés es llamado memoization, véase en). Si estamos seguros de que no volveremos a necesitar una solución en concreto, la podemos descartar para ahorrar espacio. En algunos casos, podemos calcular las soluciones a problemas que de antemano sabemos que vamos a necesitar.

En resumen, la programación hace uso de:

Subproblemas superpuestos

Subestructuras óptimas

Memoización

La programación toma normalmente uno de los dos siguientes enfoques:

Top-down: El problema se divide en subproblemas, y estos se resuelven recordando las soluciones por si fueran necesarias nuevamente. Es una combinación de memorización y recursión.

Bottom-up: Todos los problemas que puedan ser necesarios se resuelven de antemano y después se usan para resolver las soluciones a problemas mayores. Este enfoque es ligeramente mejor en consumo de espacio y llamadas a funciones, pero a veces resulta poco intuitivo encontrar todos los subproblemas necesarios para resolver un problema dado.

Originalmente, el término de programación dinámica se refería a la resolución de ciertos problemas y operaciones fuera del ámbito de la Ingeniería Informática, al igual que hacía la programación lineal. Aquel contexto no tiene relación con la programación en absoluto; el nombre es una coincidencia. El término también lo usó en los años 40 Richard Bellman, un matemático norteamericano, para describir el proceso de resolución de problemas donde hace falta calcular la mejor solución consecutivamente.

Algunos lenguajes de programación funcionales, sobre todo Haskell,

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com