ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Termoquimica Y Electroquimica


Enviado por   •  2 de Junio de 2014  •  1.055 Palabras (5 Páginas)  •  4.410 Visitas

Página 1 de 5

5.3. Termoquímica

La Termoquímica se encarga de estudiar las características de una reacción química, con respecto al requerimiento o liberación energética implicada en la realización de los cambios estructurales correspondientes.

Si la energía química de los reaccionantes es mayor que la de los productos se produce una liberación de calor durante el desarrollo de la reacción, en caso contrario se necesita una adición de calor. Esto hace que las reacciones se clasifiquen en exotérmicas o endotérmicas según que liberen o requieran calor.

La reacción entre hidróxido de sodio y ácido clorhídrico es altamente exotérmica, mientras que la reacción de formación de óxido de magnesio a partir de oxígeno y magnesio es endotérmica.

Ecuaciones Termoquímicas

En termoquímica las reacciones químicas se escriben como ecuaciones donde además de las fórmulas de los componentes se especifica la cantidad de calor implicada a la temperatura de la reacción, y el estado físico de los reactivos y productos mediante símbolos "s" para sólidos, "g" para gases, "l" para líquidos y "ac" para fases acuosas. El calor de una reacción, QR, usualmente se expresa para la reacción en sentido derecho y su signo indica si la reacción es exotérmica o endotérmica, de acuerdo a que si

Reacción exotérmica : QR < 0

Reacción endotérmica : QR > 0

La siguiente reacción está escrita en forma de ecuación termoquímica:

Fe2O3 (s) + 3C(grafito) ↔ 2Fe(s) + 3CO(g) QR = 492,6 KJ/mol porque se expresan los estados de sus componentes y el calor de reacción en condiciones estándares. Se entiende que 492.6 KJ es la cantidad de calor requerido en la reacción, por cada mol de óxido férrico que reacciona en estado sólido a 25'C y 1 atmósfera de presión.

5.4. Calor de reacción.

Es el calor liberado o absorbido en una reacción a condiciones determinadas. Es una propiedad termodinámica de estado cuyo valor, depende principalmente, de la temperatura de la reacción y se calcula por la diferencia entre las energías químicas de los productos, Ep, y los reaccionantes, Er, es decir,

QR = Ep - Er

Cuando la suma de los contenidos calóricos de los productos excede al de los reaccionantes, la diferencia es la cantidad de calor requerida en la reacción endotérmica y es de signo positivo. Si la suma de los contenidos calóricos de los reaccionantes excede al de los productos la diferencia es la cantidad de calor liberada en la reacción exotérmica y es de signo negativo

Ley de Hess

La Ley de Hess expresa que: "El calor de una reacción es independiente del número de etapas que constituyen su mecanismo y, por lo tanto, depende sólo de los productos (estado final) y

reaccionantes (estado inicial)"

5.5. Calor de formación.

Calor de formación de una sustancia

Es la cantidad de calor liberado o absorbido en la reacción de formación de un mol de una sustancia a partir de sus elementos constituyentes. La reacción de formación del bromuro de hidrógeno gaseoso a partir de sus elementos componentes en estado gaseoso y su correspondiente calor de formación, a condiciones estándares, es:

½ H2(g) + ½ Br2(g) ↔ HBr(g) Qf

0

= -36,38 KJ/mol

Los compuestos como el bromuro de hidrógeno gaseoso se denominan compuestos exotérmicos porque su reacción de formación es exotérmica, en caso contrario se llaman compuestos endotérmicos.

Es importante notar que el cambio en el estado material de alguno de los componentes de una reacción química producirá un cambio en la cantidad de calor implicada y/o en la naturaleza energética de la reacción. En la reacción de formación del agua no hay diferencias estructurales al obtenerla en forma gaseosa o líquida, pero energéticamente es mayor la cantidad liberada cuando se forma un mol de agua líquida con respecto a la cantidad liberada cuando se forma un mol de agua gaseosa, como se puede observar en las siguientes reacciones de formación

H2(g) + 1/2 O2(g) ↔ H2O(g) Qf

0

= -241.814 KJ/mol.

H2(g) + 1/2 O2(g) ↔ H2O(1) Qf

0

= -285,830 KJ/mol

Los calores de formación son determinados experimentalmente y para su estimación se asume que el calor de formación de los elementos en estado libre y en condiciones estándares es cero. La

Tabla 1 muestra los calores de formación de un conjunto de compuestos en condiciones estándares

5.6. Calor de solución.

Es la variación de entalpia relacionada con la adición de una cantidad determinada de soluto a una cantidad determinada de solvente a temperatura y presión constantes.

El proceso de disolución del Cloruro de Sodio en agua requiere energía, ya que deben separarse el Na+

y el Cl- que se encuentran unidos por fuerzas electrostáticas en el cristal y posteriormente solvatarse en el solvente quedando al estado de iones en la solución. El balance energético de estos procesos puede dar un resultado positivo o negativo, es decir, en algunos casos se requiere energía para disolver un sólido y en otros casos se desprende energía, también en forma de calor. En el caso particular de una disolución, el calor desprendido o absorbido se llama “Calor de Disolución”, o mejor “Entalpía de Solución”, D Hsoln.

El proceso de disolución del Na Cl en agua, se puede representar por:

Na Cl (s) —H2O→ Na+ (ac) + Cl- (ac) D Hsoln = 4,0 kJ

5.7. Electroquímica

Electroquímica es una rama de la química que estudia la transformación entre la energía eléctrica y la energía química. En otras palabras, las reacciones químicas que se dan en la interface de un conductor eléctrico (llamado electrodo, que puede ser un metal o un semiconductor) y un conductor iónico (el electrolito) pudiendo ser una disolución y en algunos casos especiales, un sólido.

Si una reacción química es conducida mediante una diferencia de potencial aplicada externamente, se hace referencia a una electrólisis. En cambio, si la caída de potencial eléctrico, es creada como consecuencia de la reacción química , se conoce como un"acumulador de energía eléctrica", también llamado batería o celda galvánica.

Las reacciones químicas donde se produce una transferencia de electrones entre moléculas se conocen como reacciones redox, y su importancia en la electroquímica es vital, pues mediante este tipo de reacciones se llevan a cabo los procesos que generan electricidad o en caso contrario, son producidos como consecuencia de ella.

En general, la electroquímica se encarga de estudiar las situaciones donde se dan reacciones de oxidación y reducción encontrándose separadas, físicamente o temporalmente, se encuentran en un entorno conectado a un circuito eléctrico. Esto último es motivo de estudio de la química analítica, en una subdisciplina conocida como análisis potenciométrico.

...

Descargar como  txt (6.7 Kb)  
Leer 4 páginas más »
txt