Flip Flop
babasonicos20125 de Noviembre de 2013
337 Palabras (2 Páginas)278 Visitas
5.3.2 Simplificación de Funciones con Mapas de Karnaught
La característica principal de los mapas de Karnaught es que las celdas
que están juntas ya sea horizontal o verticalmente (pero no en diagonal),
que corresponden a minitérminos o maxitérminos, difieren en una sola
variable que en un término aparece complementada y en el otro no. Es
precisamente para obtener esta combinación que se usa la numeración de
celdas en forma del código de Grey y no usando una numeración normal.
Para ver los beneficios de esta disposición, analizemos los minitérminos
m8 (1000 en binario) y m12 (1100 en binario) de una función de cuatro
variables que se encuentran en celdas adyacentes en un mapa K:
m8 AB C D
m12 ABC D
5. Simplificación de Funciones Lógicas
5-11
Figura 5.4 Mapa de Karnaught para tres y cuatro variables.
Nótese que sólo se diferencian en una variable (B) que aparece en forma
complementada en uno y no complementada en otro. Los términos pueden
ser combinados para su reducción:
AB C D ABC D AC D(B B) AC D
Así, los dos terminos que tenian cuatro variables se han reducido a uno
con tres variables. La variable que se encontraba complementada en un
término y en el otro no, ha sido eliminada. Si estos minitérminos se encontrasen
adyacentes a otros pares, se podrían haber combinado de forma
similar para su reducción.
Como principio general tenemos que:
Cualquier par de celdas adyacentes de minitérminos pueden ser
combinados para su reducción al analizar la variable que está
complementada en uno de ellos y no complementada en el otro.
Directamente del mapa sólo es necesario ver qué variable cambia de 1 a
0 o de 0 a 1 para que ésta se elimine. En el caso anterior del minitérmino 8
con el 12 podemos ver en el mapa que la variable Bcambia de 1 (en el minitérmino
12) a 0 ( en el minitérmino 8).
Observe la figura 5.5 y nótese que los minitérminos que no se encuentran
adyacentes pero que sin embargo sólo cambian en una variable son
factibles de reducción. En la figura 5.5 realizamos el mapa K de la
función:
f (A,B,C,D) m(2,3,8,10,12)
Sistemas Digitales y Arquitectura de Computadoras
5-
...