ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Glosario Termodinamica


Enviado por   •  15 de Diciembre de 2013  •  2.462 Palabras (10 Páginas)  •  467 Visitas

Página 1 de 10

La termodinámica: (del griego θερμo, termo, que significa «calor» y δύναμις, dínamis, que significa «fuerza»), es la rama de la física que describe los estados de equilibrio a nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental. Los estados de equilibrio son estudiados y definidos por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema, o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden ser tratadas por medio de la termodinámica.

La temperatura: es una magnitud referida a las nociones comunes de caliente, tibio o frío que puede ser medida con un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.

El calor está definido como la forma de energía que se transfiere entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas, sin embargo en termodinámica generalmente el término calor significa simplemente transferencia de energía. Este flujo de energía siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia hasta que ambos cuerpos se encuentren en equilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia).

El trabajo que realiza una fuerza sobre un cuerpo equivale a la energía necesaria para desplazar este cuerpo. El trabajo es una magnitud física escalar que se representa con la letra \ W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.

Ya que por definición el trabajo es un tránsito de energía, nunca se refiere a él como incremento de trabajo.

Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asi mismo, si no hay desplazamiento, el trabajo también será nulo.

El término energía (del griego ἐνέργεια/energeia, actividad, operación; ἐνεργóς/energos = fuerza de acción o fuerza trabajando) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, transformar o poner en movimiento.

En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada) para extraerla, transformarla y darle un uso industrial o económico.

El cero absoluto: es la temperatura teórica más baja posible. A esta temperatura el nivel de energía interna del sistema es el más bajo posible, por lo que las partículas, según la mecánica clásica, carecen de movimiento; no obstante, según la mecánica cuántica, el cero absoluto debe tener una energía residual, llamada energía de punto cero, para poder así cumplir el principio de indeterminación de Heisenberg. El cero absoluto sirve de punto de partida tanto para la escala de Kelvin como para la escala de Rankine.

Un sistema termodinámico es una parte del Universo que se aísla para su estudio.

Este aislamiento se puede llevar a cabo de una manera real, en el campo experimental, por ejemplo una máquina térmica, o de una manera ideal como la máquina de Carnot, cuando se trata de abordar un estudio teórico.

En física y química se observa que, para cualquier sustancia o elemento material, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.

Todos los estados de agregación poseen propiedades y características diferentes, los más conocidos y observables cotidianamente son cuatro, las llamadas fases sólida, líquida, gaseosa y plasmática. Otros estados son posibles, pero no se produce de forma natural en nuestro entorno por ejemplo: condensado de Bose-Einstein, condensado fermiónico y las estrellas de neutrones. Otros estados, como plasmas de quark-gluón , se cree que son posibles.

Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.

Las sustancias en estado sólido suelen presentar algunas de las siguientes características:

• Cohesión elevada.

• Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original.

• A efectos prácticos son Incompresibles.

• Resistencia a la fragmentación.

• Fluidez muy baja o nula.

• Algunos de ellos se subliman.

Si se incrementa la temperatura, el sólido va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:

...

Descargar como (para miembros actualizados)  txt (16.3 Kb)  
Leer 9 páginas más »
Disponible sólo en Clubensayos.com