ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Productos Notables

paula_18fav2 de Diciembre de 2013

655 Palabras (3 Páginas)332 Visitas

Página 1 de 3

: navegación, búsqueda

Productos notables es el nombre que reciben multiplicaciones con expresiones algebraicas que cumplen ciertas reglas fijas, cuyo resultado se puede escribir mediante simple inspección, sin verificar la multiplicación. Su aplicación simplifica y sistematiza la resolución de muchas multiplicaciones habituales.

Cada producto notable corresponde a una fórmula de factorización

Factor común[editar código]

Representación gráfica de la regla de factor común. Forma un gnomon.

El resultado de multiplicar un binomio por un término se obtiene aplicando la propiedad distributiva:

Para esta operación existe una interpretación geométrica, ilustrada en la figura adjunta. El área del rectángulo es que también puede obtenerse como la suma de las dos áreas coloreadas.

Cuadrado de un binomio[editar código]

Ilustración gráfica del binomio al cuadrado.

Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Así:

Un trinomio de la expresión siguiente: se conoce como trinomio cuadrado perfecto.

Cuando el segundo término es negativo, la igualdad que se obtiene es:

En ambos casos el signo del tercer término es siempre positivo.

Ejemplo:

Simplificando:

Producto de dos binomios con un término común[editar código]

Ilustración gráfica del producto de binomios con un término común.

Para resolver un binomio con término común se tiene que identificar el término común: en este caso X, la cual se eleva al cuadrado, mas la suma de los no comunes: (a)(b) el resultado se multiplica por X mas la multiplicación de no los comunes:

Ejemplo:

Agrupando términos:

Luego:

Producto de dos binomios conjugados[editar código]

Véase también: Conjugado (matemática)

Producto de binomios conjugados.

Dos binomios conjugados se diferencian sólo en el signo de la operación. Para su multiplicación basta elevar los monomios al cuadrado y restarlos (obviamente, un término conserva el signo negativo), con lo cual se obtiene una diferencia de cuadrados.

Ejemplo:

Agrupando términos:

A este producto notable también se le conoce como suma por la diferencia.

Polinomio al cuadrado[editar código]

Elevación de un trinomio al cuadrado de forma gráfica.

Para elevar un polinomio de cualquier cantidad de términos se suman los cuadrados de cada término individual y luego se añade el doble de la suma de los productos de cada posible par de términos.

Ejemplo:

Multiplicando los monomios:

Agrupando términos:

Luego:

Cubo de un binomio[editar código]

Descomposición volumétrica del binomio al cubo.

Para calcular el cubo de un binomio se suman, sucesivamente:

El cubo del primer término con el triple producto del cuadrado del primero por el segundo.

El triple producto del primero por el cuadrado del segundo.

El cubo del segundo término.

Identidades de Cauchy:

Ejemplo:

Agrupando términos:

Si la operación del binomio implica resta,

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com