ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Efinición de series


Enviado por   •  12 de Mayo de 2015  •  Tesis  •  1.476 Palabras (6 Páginas)  •  194 Visitas

Página 1 de 6

efinición de series:

Una serie matemática es la expresión de la suma de los infinitos términos de una sucesión (una aplicación definida sobre los números naturales).

Una serie es una sucesión de un conjunto de términos formados según una ley determina. Por ejemplo, 1,4,9,16,25

Es la suma indicada de los términos de una secesión. Así de las sucesiones anteriores obtenemos la serie:

1+4+9+16+25

Cuando el número de términos es limitado, se dice que la sucesión o serie es finita. Cuando el número de términos es ilimitado, la sucesión o serie se llama infinita.

El término general ó término enésimo es una expresión que indica la ley de formación de los términos.

4.1.1 Serie Finita

Sucesión de números tales que la proporción entre cualquier término (que no sea el primero)

y el término que le precede es una cantidad fija llamada razón. Por ejemplo, la secuencia de números 2, 4, 8, 16, 32, 64, 128 es una progresión geométrica con razón 2; y 1, 1, 3, 7, 9, >, … (1)i, es una progresión geométrica con razón 1.

La primera es una progresión geométrica finita con siete términos; la segunda es una progresión geométrica infinita.

4.2 Serie numérica y convergencia. Prueba de razón y raíz.

Una secuencia es una lista ordenada de objetos (o eventos). Como un conjunto, que contiene los miembros (también llamados elementos o términos ), y el número de términos (posiblemente infinita) se llama la longitud de la secuencia. A diferencia de un conjunto, el orden importa, y exactamente los mismos elementos pueden aparecer varias veces en diferentes posiciones en la secuencia. Una secuencia es una discreta función.

4.1.2 Serie Infinita

Las series infinitas son aquellas donde i toma el valor de absolutamente todos los números naturales.

Son series de la forma S an (x - x0)n ; loss números reales a0, a1, .... , an, ... son los coeficientes de la serie. Si x0 = 0 se obtiene la serie S an . xn.

Como toda serie S an (x - x0)n puede llevarse a la forma S an .x¢ n haciendo x¢ = x - x0 ; solo estudiaremos series de potencias de este último tipo.

Se presentan tres situaciones posibles: series que convergen solamente para x = 0; series que convergen para cualquier número real x y series que convergen para algunos valores de x y divergen para otros. Esto conduce al siguiente:

Teorema:

Si la serie de potencias S an .xn converge para el valor x0 ¹ 0, entonces converge en valor absoluto para cualquier x / ô xô < ô x0ô .

4.2 serie numérica y convergencia. Prueba de la razón( criterio de D´Alembert) y prueba de la raíz (criterio de cauchy)

Como un conjunto, que contiene los miembros (también llamados elementos o términos), y el número de términos (posiblemente infinita) se llama la longitud de la secuencia. A diferencia de un conjunto, el orden importa, y exactamente los mismos elementos pueden aparecer varias veces en diferentes posiciones en la secuencia. Una secuencia es una discreta función. Por ejemplo, (C, R, Y) es una secuencia de letras que difiere de (Y, C, R), como las cuestiones de pedido. Las secuencias pueden ser finitos, como en este ejemplo, o infinita, como la secuencia de todos, incluso positivos enteros (2, 4, 6 ,…). Secuencias finitos se conocen como cadenas o palabras y secuencias infinitas como los arroyos. La secuencia vacía () se incluye en la mayoría de las nociones de secuencia, pero pueden ser excluidos en función del contexto.

• Criterio de D'Alembert

Sea una serie , tal que ak > 0 ( serie de términos positivos).

Si existe

con , el Criterio de D'Alembert establece que:

si L < 1, la serie converge.

si L > 1, entonces la serie diverge.

si L = 1, no es posible decir algo sobre el comportamiento de la serie.

En este caso, es necesario probar otro criterio, como el criterio de Raabe.

• Criterio de Cauchy

Sea una serie , tal que ak > 0 (serie de términos positivos). Y supongamos que existe

, siendo

Entonces, si:

L < 1, la serie es convergente.

L > 1 entonces la serie es divergente.

L=1, no podemos concluir nada a priori y tenemos que recurrir al criterio de Raabe, o de comparación, para ver si podemos llegar a alguna conclusión.

4.3

...

Descargar como (para miembros actualizados)  txt (8 Kb)  
Leer 5 páginas más »
Disponible sólo en Clubensayos.com