ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Una bomba hidráulica


Enviado por   •  13 de Mayo de 2013  •  Exámen  •  3.427 Palabras (14 Páginas)  •  385 Visitas

Página 1 de 14

Una bomba hidráulica es una máquina generadora que transforma la energía (generalmente energía mecánica) con la que es accionada en energía hidráulica del fluido incompresible que mueve. El fluido incompresible puede ser líquido o una mezcla de líquidos y sólidos como puede ser el hormigón antes de fraguar o la pasta de papel. Al incrementar la energía del fluido, se aumenta su presión, su velocidad o su altura, todas ellas relacionadas según el principio de Bernoulli. En general, una bomba se utiliza para incrementar la presión de un líquido añadiendo energía al sistema hidráulico, para mover el fluido de una zona de menor presión o altitud a otra de mayor presión o altitud.

Existe una ambigüedad en la utilización del término bomba, ya que generalmente es utilizado para referirse a las máquinas de fluido que transfieren energía, o bombean fluidos incompresibles, y por lo tanto no alteran la densidad de su fluido de trabajo, a diferencia de otras máquinas como lo son los compresores, cuyo campo de aplicación es la neumática y no la hidráulica. Pero también es común encontrar el término bomba para referirse a máquinas que bombean otro tipo de fluidos, así como lo son las bombas de vacío o las bombas de aire.

Bomba de engranajes

El uso de las bombas de engranajes externos en el mercado es muy común debido a que es un producto compacto, potente, robusto y competitivo a nivel de coste. Este componente transforma la energía cinética en forma de par motor generada por un motor en energía hidráulica a través del caudal de aceite generado por la bomba.

Este caudal de aceite a presión se utiliza para generar, normalmente, el movimiento del actuador instalado en la máquina/aplicación.

El elemento principal de la bomba es el par de engranajes acoplados. El par de engranajes está formado por el eje conductor/motriz (el que es accionado por el eje del motor) y el eje conducido. El eje conductor hace girar al eje conducido bajo el principio del desplazamiento provocado por el contacto entre los dientes de los engranajes de los ejes.

Al accionarse la bomba, el aceite entra por el orificio de entrada (aspiración) de la bomba debido a la depresión creada al separarse los dientes de uno respecto a los del otro engranaje. El aceite es transportado a través de los flancos de los dientes del engranaje hasta llegar al orificio de salida de la bomba donde, al juntarse los dientes del eje conductor con los del conducido, el aceite es impulsado hacia el orificio de salida (presión).

Bomba de tornillo

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas.

Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Bomba de tornillo}} ~~~~

Bomba de dos tornillos.

Bomba de tornillo.

Una bomba de tornillo es un tipo de bomba hidráulica considerada de desplazamiento positivo, que se diferencia de las habituales, más conocidas como bombas centrífugas. Esta bomba utiliza un tornillo helicoidal excéntrico que se mueve dentro de una camisa y hace fluir el líquido entre el tornillo y la camisa.

Está específicamente indicada para bombear fluidos viscosos, con altos contenidos de sólidos, que no necesiten removerse o que formen espumas si se agitan. Como la bomba de tornillo desplaza el líquido, este no sufre movimientos bruscos, pudiendo incluso bombear uvas enteras.

Uno de los usos que tiene es la de bombear fangos de las distintas etapas de las depuradoras, pudiendo incluso bombear fangos deshidratados procedentes de filtros prensa con un 22-25% de sequedad.

Este tipo de bombas son ampliamente utilizadas en la industria petrolera a nivel mundial, para el bombeo de crudos altamente viscosos y con contenidos apreciables de sólidos. Nuevos desarrollos de estas bombas permiten el bombeo multifásico.

En este tipo de bombas pueden operar con flujos fijos a su descarga, aún cuando bombeen contra una red de presión variable. Convirtiéndolas en excelentes equipos de bombeo a utilizar en redes de recolección de petróleo. En el caso de las bombas centrífugas. El flujo entregado depende de la presión a su descarga.

Bomba peristáltica

Bomba peristáltica lineal.

Bomba peristáltica lineal.

Una bomba peristáltica es un tipo de bomba hidráulica de desplazamiento positivo usada para bombear una variedad de fluidos. El fluido es contenido dentro de un tubo flexible empotrado dentro de una cubierta circular de la bomba (aunque se han hecho bombas peristálticas lineales). Un rotor con un número de 'rodillos', 'zapatas' o 'limpiadores' unidos a la circunferencia externa comprimen el tubo flexible. Mientras que el rotor da vuelta, la parte del tubo bajo compresión se cierra (o se ocluye) forzando, de esta manera, el fluido a ser bombeado para moverse a través del tubo. Adicionalmente, mientras el tubo se vuelve a abrir a su estado natural después del paso de la leva ('restitución'), el flujo del fluido es inducido a la bomba. Este proceso es llamado peristalsis y es usado en muchos sistemas biológicos como el aparato digestivo.

Índice [ocultar]

1 Usos

2 Bombas de alta y baja presión

3 Ventajas

4 Usos típicos

5 Véase también

6 Enlaces externos

Usos

Las bombas peristálticas son típicamente usadas para bombear fluidos limpios o estériles porque la bomba no puede contaminar el líquido, o para bombear fluidos agresivos porque el fluido puede dañar la bomba. Algunas aplicaciones comunes incluyen bombear productos químicos agresivos, mezclas altas en sólidos y otros materiales donde el aislamiento del producto del ambiente, y el ambiente del producto, son críticos.

Bombas de alta y baja presión

Las bombas peristálticas de más alta presión, que típicamente pueden operar con hasta 16 bar, usualmente usan zapatos y tienen cubiertas llenas con lubricante para prevenir la abrasión del exterior del tubo de la bomba y para ayudar en la disipación del calor. Usualmente usan tubos reforzados, a menudo llamados 'mangueras', y esta clase de bomba es con frecuencia llamada 'bomba de manguera'.

Las bombas peristálticas de más baja presión, tienen típicamente cubiertas secas y usan rodillos. Usualmente usan tuberías no reforzadas, y esta clase de bomba a veces es llamada una 'bomba de tubo' o ' bomba de tubería'.

Ventajas

Debido a que la única parte de la bomba en contacto con el fluido que es bombeado es el interior del tubo, las superficies internas de la bomba son fáciles de esterilizar y limpiar. Además, puesto que no hay partes móviles en contacto con el líquido, las bombas peristálticas son baratas de fabricar. Su carencia de válvulas, de sellos y de arandelas, y el uso de mangueras o tubos, hace que tengan un mantenimiento relativamente de bajo costo comparado a otros tipos de bombas.

Usos típicos

Máquinas de diálisis

Máquinas de bombas para bypass de corazón abierto

Fabricación de alimentos

Dispensar de bebidas

Producción farmacéutica

Lodo de aguas residuales

Fuentes y cascadas decorativas de mesa

Bomba centrífuga

Las Bombas centrífugas también llamadas Rotodinámicas, son siempre rotativas y son un tipo de bomba hidráulica que transforma la energía mecánica de un impulsor. El fluido entra por el centro del rodete, que dispone de unos álabes para conducir el fluido, y por efecto de la fuerza centrífuga es impulsado hacia el exterior, donde es recogido por la carcasa o cuerpo de la bomba, que por el contorno su forma lo conduce hacia las tubuladuras de salida o hacia el siguiente rodete se basa en la ecuación de Euler y su elemento transmisor de energía se denomina impulsor rotatorio llamado rodete en energía cinética y potencial requeridas y es este elemento el que comunica energía al fluido en forma de energía cinética.

Las Bombas Centrífugas se pueden clasificar de diferentes maneras:

• Por la dirección del flujo en: Radial, Axial y Mixto.

• Por la posición del eje de rotación o flecha en: Horizontales, Verticales e Inclinados.

• Por el diseño de la coraza (forma) en: Voluta y las deTurbina.

• Por el diseño de la mecánico coraza en: Axialmente Bipartidas y las Radialmente Bipartidas.

• Por la forma de succión en: Sencilla y Doble.

Aunque la fuerza centrífuga producida depende tanto de la velocidad en la periferia del impulsor como de la densidad del líquido, la energía que se aplica por unidad de masa del líquido es independiente de la densidad del líquido. Por tanto, en una bomba dada que funcione a cierta velocidad y que maneje un volumen definido de líquido, la energía que se aplica y transfiere al líquido, (en pascales, Pa, metros de columna de agua m.c.a. o o pie-lb/lb de líquido) es la misma para cualquier líquido sin que importe su densidad. Tradicionalmente la presión proporcionada por la bomba en metros de columna de agua o pie-lb/lb se expresa en metros o en pies y por ello que se denomina genéricamente como "altura", y aun más, porque las primeras bombas se dedicaban a subir agua de los pozos desde una cierta profundidad (o altura).

Las bombas centrífugas tienen un uso muy extendido en la industria ya que son adecuadas casi para cualquier uso. Las más comunes son las que están construidas bajo normativa DIN 24255 (en formas e hidráulica) con un único rodete, que abarcan capacidades hasta los 500 m³/h y alturas manométricas hasta los 100 metros con motores eléctricos de velocidad normalizada. Estas bombas se suelen montar horizontales, pero también pueden estar verticales y para alcanzar mayores alturas se fabrican disponiendo varios rodetes sucesivos en un mismo cuerpo de bomba. De esta forma se acumulan las presiones parciales que ofrecen cada uno de ellos. En este caso se habla de bomba multifásica o multietapa, pudiéndose lograr de este modo alturas del orden de los 1200 metros para sistemas de alimentación de calderas.

Constituyen no menos del 80% de la producción mundial de bombas, porque es la más adecuada para mover más cantidad de líquido que la bomba de desplazamiento positivo.

No hay válvulas en las bombas de tipo centrífugo; el flujo es uniforme y libre de impulsos de baja frecuencia.Los impulsores convencionales de bombas centrífugas se limitan a velocidades en el orden de 60 m/s (200 pie/s).

Bomba de ariete

Una bomba de ariete es una bomba hidráulica cíclica que utiliza la energía cinética de un golpe de ariete en un fluido para subir una parte de ese fluido a un nivel superior. No necesita por lo tanto aporte de otra energía exterior. Esto y su sencillez la hace adecuada para lugares remotos donde no hay acceso a energía eléctrica o motores de otro tipo.

Historia

Al parecer John Whitehurst de Cheshire en 1772 fabricó lo que llamó una "máquina de pulsación" pero no se tienen detalles sobre el invento. La primera bomba de ariete similar a las de hoy de la que tenemos noticia fue inventada en 1796 por Joseph Michel Montgolfier quien la instaló en su fábrica de papel. Durante el siglo XIX la bomba de ariete se popularizó mucho pero con la llegada de la electricidad y los motores de bajo coste, ha caído en desuso.

Funcionamiento

Esquema de funcionamiento de una bomba de ariete

A. Depósito de origen;

B. Tubería de carga;

C. Válvula de descarga;

D. Válvula de retención;

E. Calderín de presión;

F. Tubería de descarga;

G. Depósito de descarga;

K. Válvula (opcional) de admisión de aire.

El principio de funcionamiento es como sigue. El líquido, normalmente agua, procedente de un depósito suministrador A se acelera por un tubo de carga inclinado B con lo que su energía potencial se convierte en energía cinética. Cuando la velocidad llega a un valor determinado, la válvula de descarga C súbitamente cierra cortando el flujo lo cual genera una sobrepresión en el extremo inferior del tubo de carga, un golpe de ariete, que fuerza el agua a abrir la válvula anti-retorno D y a subir por el tubo de descarga F hacia el nivel superior del depósito G. La válvula de descarga C se vuelve a abrir debido a la bajada de presión del flujo de agua y el ciclo comienza de nuevo, cerrándose cada vez que el flujo adquiere cierto valor.

En E se coloca una campana o calderín lleno de un gas a presión, normalmente aire, que amortigua los golpes de ariete y mantiene un flujo más constante de fluido por el tubo F. Este gas se acaba disolviendo en el agua por lo que es necesario reponerlo o envolverlo en un globo de goma para evitar que se disuelva. Algunas bombas van provistas de un sistema que inyecta una burbuja de aire con cada ciclo. Este sistema consiste en que se diseña el mecanismo para que al cerrar la válvula D permite que se invierta momentáneamente el flujo del agua por lo que al cerrar súbitamente la válvula se produce una depresión que fuerza la entrada de un poco de aire por la válvula K.

Si la bomba de ariete tuviera un rendimiento energético perfecto entonces la masa de agua perdida por la válvula C, a la que llamaremos Q, multiplicada por la altura de suministro h sería igual a la altura H multiplicada por la masa de agua elevada, q. Es decir: q = Q*h/H. En la realidad el rendimiento siempre es inferior y depende en gran medida de la relación h/H. En el mejor de los casos el rendimiento puede llegar al 85% pero decrece según crece la altura H y puede caer hasta el 20% o menos en instalaciones que bombean a gran altura.

Bomba de membrana

La bomba de membrana o bomba de diafragma es un tipo de bomba de desplazamiento positivo, generalmente alternativo, en la que el aumento de presión se realiza por el empuje de unas paredes elásticas —membranas o diafragmas— que varían el volumen de la cámara, aumentándolo y disminuyéndolo alternativamente. Unas válvulas de retención, normalmente de bolas de elastómero, controlan que el movimiento del fluido se realice de la zona de menor presión a la de mayor presión.

La acción de estas bombas puede ser:

Eléctrica, mediante un motor eléctrico, en cuyo caso se dice que es una electrobomba. Sin embargo, hay otras electrobombas que no son bombas de membrana.

Neumática, mediante aire comprimido, en cuyo caso se dice que es una bomba neumática. La mayoría de las bombas neumáticas son bombas de membrana.

Existen bombas neumáticas y eléctricas de doble diafragma, las cuales funcionan bajo el mismo principio que las anteriores, pero tienen dos cámaras con un diafragma cada una, de forma que cuando una membrana disminuye el volumen de su cámara respectiva, la otra membrana aumenta el volumen de la otra cámara y viceversa.

Aplicaciones

Ofrecen ciertas ventajas frente a otros tipos de bombas, ya que no poseen cierres mecánicos ni empaquetaduras que son las principales causas de rotura de los equipos de bombeo en condiciones severas. Estas bombas son autocebantes, es decir, no es necesario llenar la columna de aspiración de líquido para que funcionen, por lo que pueden ser utilizadas para sacar líquido de depósitos aspirando aunque la tubería de aspiración esté llena de aire inicialmente.

Su mantenimiento es sencillo y rápido y con componentes fáciles de sustituir.

Dependiendo del rango de temperaturas en el que vaya a trabajar la máquina, se utilizan unos materiales u otros para las membranas. Los materiales más utilizados son neopreno, vitón, teflón, poliuretano y otros materiales sintéticos.

Debido a la resistencia a la corrosión de estas bombas y a no ser necesario cebarlas para que funcionen, estos equipos son muy utilizados en la industria para el movimiento de prácticamente cualquier líquido y en multitud de industrias como ácidos, derivados del petróleo, disolventes, pinturas, barnices, tintas, fangos de depuradora, reactivos, concentrados de frutas, chocolate, plantas de proceso, industrias químicas, alimentarias, ópticas, galvánicas o de bebidas, aguas residuales, minerías, construcción, buques, industrias cerámicas, cartoneras, fábricas de papel o de circuitos impresos, etc.

Máquina hidráulica

Una Máquina hidráulica es una variedad de máquina de fluido que emplea para su funcionamiento las propiedades de un fluido incompresible o que se comporta como tal, debido a que su densidad en el interior del sistema no sufre variaciones importantes.

Convencionalmente se especifica para los gases un límite de 100 mbar para el cambio de presión; de modo que si éste es inferior, la máquina puede considerarse hidráulica. Dentro de las máquinas hidráulicas el fluido experimenta un proceso adiabático, es decir no existe intercambio de calor con el entorno.

Las máquinas hidráulicas se pueden clasificar atendiendo a diferentes criterios.

Según la variación de energía

En los motores hidráulicos, la energía del fluido que atraviesa la máquina disminuye, obteniéndose energía mecánica, mientras que en el caso de generadores hidráulicos, el proceso es el inverso, de modo que el fluido incrementa su energía al atravesar la máquina.

Atendiendo al tipo de energía fluido dinámica que se intercambia a través de la máquina tenemos:

Máquinas en las que se produce una variación de la energía potencial, como por ejemplo el tornillo de Arquímedes.

Máquinas en las que se produce una variación de la energía cinética, como por ejemplo aerogeneradores, hélices o turbina pelton. Estas se denominan máquinas de acción y no tienen carcasa.

Máquinas en las que se produce una variación de la entalpía (presión), como por ejemplo las bombas centrífugas. Estas máquinas se denominan máquinas de reacción.

Según el tipo de intercambio

Teniendo en cuenta el modo en el que se intercambia la energía dentro de la máquina su clasificación puede ser así:

Máquinas de desplazamiento positivo o volumétrico. Se trata de uno de los tipos más antiguos de máquinas hidráulicas y se basan en el desplazamiento de un volumen de fluido comprimiéndolo. El ejemplo más claro de este tipo de máquinas es la bomba de aire para bicicletas. Suministran un caudal que no es constante, para evitarlo en ocasiones se unen varias para lograr una mayor uniformidad. Estas máquinas son apropiadas para suministros de alta presión y bajos caudales.

Según el encerramiento

Atendiendo a la presencia o no de carcasa:

Máquinas no entubadas como pueden ser las máquinas de acción.

Máquinas entubadas.

Según el movimiento

Existen otros criterios, como la división en rotativas y alternativas, dependiendo de si el órgano intercambiador de energía tiene un movimiento rotativo o alternativo, esta clasificación es muy intuitiva pero no atiende al principio básico de funcionamiento de estas máquinas.

Tuberías en paralelo

Un sistema de tuberías en paralelo está formado por un conjunto de tuberías que nacen en un mismo punto inicial y terminan en un único punto final.

Para un sistema general de n tuberías en paralelo se verifica que:

El caudal total del sistema, es la suma de los caudales individuales de cada una de las tuberías (ecuación de continuidad)

La pérdida de carga total del sistema es igual a la pérdida de carga de cada una de las tuberías:

Donde y son las pérdidas primarias y secundarias en cada una de las tuberías del sistema.

Se entiende por perdida de carga primaria, a la perdida de carga producida en la tubería.

Se entiende por perdida de carga secundaria (perdida de carga local), a la perdida de carga producida en algún accesorio que interrumpe la tubería. Los accesorios pueden ser cuplas, niples, codos, llaves o válvulas, "T", ampliaciones (gradual o brusca), reducciones (gradual o brusca), uniones, etc. Debido al valor de esta magnitud, se recomienda que esta perdida sea considerada en el cálculo de la perdida de carga de la tubería.

Sistema de 3 tuberías en paralelo entre A y B

Cálculo y resolución

La resolución de estos sistemas, se basa en:

Considerando las pérdidas de carga locales en accesorios (los cálculos son muy engorrosos)

NO considerando estas perdidas (se asume que estas corresponden a cierto porcentaje de la longitud de la tubería, de esta manera la longitud de la tubería es neta y mayor a la longitud real de la tubería)

En cualquiera de los casos, se hace amplio uso del Teorema de Oros

La resolución de sistemas de tuberías en paralelo, emplea formulas tales como la formula de Darcy-Weisbach (esta formula es la mas completa, incluyendo todos los factores importantes de las tuberías). Otras formulas de naturaleza empírica son: fórmula de Manning, Hazen-Williams, Kutter y otras.

Tuberías en serie

Un sistema de tuberías en serie está formado por un conjunto de tuberías conectadas una a continuación de la otra y que comparten el mismo caudal. Las tuberías pueden o no tener diferente sección transversal.

Para un sistema general de n tuberías en serie se verifica que:

• El caudal es el mismo en todas las tuberías (ecuación de continuidad)

• La pérdida de carga total en todo el sistema es igual a la suma de las pérdidas en cada una de las tuberías:

Donde y son las pérdidas primarias y secundarias en cada una de las tuberías del sistema.

• Se entiende por perdida de carga primaria, a la perdida de carga producida en la tubería.

• Se entiende por perdida de carga secundaria (perdida de carga local), a la perdida de carga producida en algún accesorio que interrumpe la tubería. Los accesorios pueden ser cuplas, niples, codos, llaves o válvulas, "T", ampliaciones (gradual o brusca), reducciones (gradual o brusca), uniones, etc. Debido al valor de esta magnitud, se recomienda que esta perdida sea considerada en el cálculo de la perdida de carga de la tubería.

...

Descargar como  txt (21.5 Kb)  
Leer 13 páginas más »
txt