Ingles Vaughan
fermin980919 de Enero de 2014
4.280 Palabras (18 Páginas)266 Visitas
Transductores de temperatura
INTRODUCCION
Es fácil realizar medidas de la temperatura con un sistema de adquisición de datos, pero la realización de medidas de temperatura exactas y repetibles no es tan fácil.
La temperatura es un factor de medida engañoso debido a su simplicidad. A menudo pensamos en ella como un simple número, pero en realidad es una estructura estadística cuya exactitud y repetitividad pueden verse afectadas por la masa térmica, el tiempo de medida, el ruido eléctrico y los algoritmos de medida. Esta dificultad se puso claramente de manifiesto en el año 1990, cuando el comité encargado de revisar la Escala Práctica Internacional de Temperaturas ajustó la definición de una temperatura de referencia casi una décima de grado centígrado. (Imaginemos lo que ocurriría si descubriéramos que a toda medida que obtenemos normalmente le falta una décima de amperio.)
Dicho de otra forma, la temperatura es difícil de medir con exactitud aún en circunstancias óptimas, y en las condiciones de prueba en entornos reales es aún más difícil. Entendiendo las ventajas y los inconvenientes de los diversos enfoques que existen para medir la temperatura, resultará más fácil evitar los problemas y obtener mejores resultados.
En el siguiente informe se comparan los cuatro tipos más corrientes de transductores de temperatura que se usan en los sistemas de adquisición de datos: detectores de temperatura de resistencia (RTD), termistores, sensores de IC y termopares. La elección de los transductores de temperatura adecuados y su correcta utilización puede marcar la diferencia entre unos resultados equívocos y unas cifras fiables. Los termopares son los sensores más utilizados pero normalmente se usan mal. Por eso vamos a dedicar una atención especial a estos dispositivos.
Una vez conocido la forma en que operan cada tipo de transductor de temperatura se analizaran las especificaciones técnicas de los mismos (de manera comercial) para determinar cuales son los factores más importantes a considerar para la elección de los mismos.
Conceptos Básicos Transductores de Temperatura
Los transductores eléctricos de temperatura utilizan diversos fenómenos que son influidos por la temperatura y entre los cuales figuran:
Variación de resistencia en un conductor (sondas de resistencia).
Variación de resistencia de un semiconductor (termistores).
f.e.m. creada en la unión de dos metales distintos (termopares).
Intensidad de la radiación total emitida por el cuerpo (pirómetros de radiación).
Otros fenómenos utilizados en laboratorio (velocidad del sonido en un gas, frecuencia de resonancia de un cristal, etc.).
Los metales puros tienen un coeficiente de resistencia de temperatura positivo bastante constante. El coeficiente de resistencia de temperatura, generalmente llamado coeficiente de temperatura es la razón de cambio de resistencia al cambio de temperatura. Un coeficiente positivo significa que la resistencia aumenta a medida que aumenta la temperatura. Si el coeficiente es constante, significa que el factor de proporcionalidad entre la resistencia y la temperatura es constante y que la resistencia y la temperatura se graficarán en una línea recta.
Cuando se usa un alambre de metal puro para la medición de temperatura , se le refiere como detector resistivo de temperatura , o RTD ( por las siglas en ingles de resistive temperature detector).
Cuando se usan óxidos metálicos para la medición de temperatura, el material de oxido metálicos conformado en forma que se asemejan a pequeños bulbos o pequeños capacitores. El dispositivo formado así se llama Termistor . Los termistores tienen coeficientes de temperatura negativos grandes que no son constantes . En otras palabras, el cambio de resistencia por unidad de cambio de temperatura es mucho mayor que para el metal puro, pero el cambio es en la otra dirección: la resistencia disminuye a medida que se aumenta la temperatura. El hecho de que el coeficiente no sea constante significa que el cambio en la resistencia por unidad de cambio de temperatura es diferentes a diferentes temperaturas.
La linealidad extrema de los termistores los hace poco apropiados para la medición de temperatura a través de rangos amplios . Sin embargo, para la medición de temperaturas dentro de bandas angostas, están muy bien dotados , pues dan una gran respuesta a un cambio de temperatura pequeño.
Como regla general, los termistores son preferibles cuando la banda de temperaturas esperada es angosta, mientras que los RTD son preferibles cuando la banda de temperatura esperada es amplia.
Con tantos transductores, ¿con cuál nos quedamos?
Ningún transductor es el mejor en todas las situaciones de medida, por lo que tenemos que saber cuándo debe utilizarse cada uno de ellos. Como podemos ver, en la Tabla 1 se están comparando los cuatro tipos de transductores de temperatura más utilizados, y refleja los factores que deben tenerse en cuenta: las prestaciones, el alcance efectivo, el precio y la comodidad.
RTD
Termistor
Sensor de IC
Termopar
Ventajas
Más estable.
Más preciso.
Más lineal que
los Termopares.
Alto rendimiento
Rápido
Medida de dos
hilos
El más lineal
El de más alto
rendimiento
Económico
Autoalimentado
Robusto
Económico
Amplia variedad
de formas físicas
Amplia gama de
temperaturas
Desventajas
Caro.
Lento.
Precisa fuente de
alimentación.
Pequeño cambio
de resistencia.
Medida de 4 hilos
Autocalentable
No lineal.
Rango de
Temperaturas
limitado.
Frágil.
Precisa fuente de
alimentación.
Autocalentable
Limitado a
< 250 ºC
Precisa fuente de
alimentación
Lento
Autocalentable
Configuraciones
limitadas
No lineal
Baja tensión
Precisa referencia
El menos estable
El menos sensible
Un análisis más detallado de cada uno de estos cuatro tipos nos ayudará a entender las diferencias.
TIPOS DE TRANSDUCTORES DE TEMPERATURA
Termómetros de Resistencia
La medida de temperatura utilizando sondas de resistencia depende de las características de resistencia en función de la temperatura que son propias del elemento de detección.
El elemento consiste usualmente en un arrollamiento de hilo muy fino del conductor adecuado bobinado entre capas de material aislante y protegido con un revestimiento de vidrio o de cerámica.
El material que forma el conductor se caracteriza por el llamado "coeficiente de temperatura de resistencia" que expresa, a una temperatura especificada, la variación de la resistencia en ohmios del conductor por cada grado que cambia su temperatura.
La relación entre estos factores puede verse en la expresión lineal siguiente:
Rt = R0 (1 + a t)
En la que:
R0 = Resistencia en ohmios a 0°C.
Rt = Resistencia en ohmios t °C.
a = Coeficiente de temperatura de la resistencia.
Detectores de temperatura de resistencia
El detector de temperatura de resistencia (RTD) se basa en el principio según el cual la resistencia de todos los metales depende de la temperatura. La elección del platino en los RTD de la máxima calidad permite realizar medidas más exactas y estables hasta una temperatura de aproximadamente 500 ºC. Los RTD más económicos utilizan níquel o aleaciones de níquel, pero no son tan estables ni lineales como los que emplean platino.
En cuanto a las desventajas, el platino encarece los RTD, y otro inconveniente es el autocalentamiento. Para medir la resistencia hay que aplicar una corriente, que, por supuesto, produce una cantidad de calor que distorsiona los resultados de la medida.
Una tercera desventaja, que afecta al uso de este dispositivo para medir la temperatura, es la resistencia de los RTD. Al ser tan baja, la resistencia de los hilos conductores que conectan el RTD puede provocar errores importantes. En la denominada técnica de dos hilos (Figura 1a), la resistencia se mide en los terminales del sistema de adquisición de datos, por lo que la resistencia de los hilos forma parte de la cantidad desconocida que se pretende medir. Por el contrario, la técnica de cuatro hilos (Figura 1b) mide la resistencia en los terminales del RTD, con lo cual la resistencia de los hilos queda eliminada de la medida. La contrapartida es que se necesita el doble de cables y el doble de canales de adquisición de datos. (La técnica de tres hilos ofrece una solución intermedia que elimina un cable, pero no es tan precisa.)
Figura 1a
...