ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Issac Newtoon

yosoyvictoria12321 de Septiembre de 2014

13.057 Palabras (53 Páginas)244 Visitas

Página 1 de 53

the scientific revolution. His book Philosophiæ Naturalis Principia Mathematica ("Mathematical Principles of Natural Philosophy"), first published in 1687, laid the foundations for classical mechanics. Newton also made seminal contributions to optics and shares credit with Gottfried Leibniz for the invention of calculus.

Newton's Principia formulated the laws of motion and universal gravitation, which dominated scientists' view of the physical universe for the next three centuries. By deriving Kepler's laws of planetary motion from his mathematical description of gravity, and then using the same principles to account for the trajectories of comets, the tides, the precession of the equinoxes, and other phenomena, Newton removed the last doubts about the validity of the heliocentric model of the cosmos. This work also demonstrated that the motion of objects on Earth and of celestial bodies could be described by the same principles. His prediction that the Earth should be shaped as an oblate spheroid was later vindicated by the measurements of Maupertuis, La Condamine, and others, which helped convince most Continental European scientists of the superiority of Newtonian mechanics over the earlier system of Descartes.

Newton also built the first practical reflecting telescope and developed a theory of colour based on the observation that a prism decomposes white light into the many colours of the visible spectrum. He formulated an empirical law of cooling, studied the speed of sound, and introduced the notion of a Newtonian fluid. In addition to his work on calculus, as a mathematician Newton contributed to the study of power series, generalised the binomial theorem to non-integer exponents, developed Newton's method for approximating the roots of a function, and classified most of the cubic plane curves.

Newton was a fellow of Trinity College and the second Lucasian Professor of Mathematics at the University of Cambridge. He was a devout but unorthodox Christian and, unusually for a member of the Cambridge faculty of the day, he refused to take holy orders in the Church of England, perhaps because he privately rejected the doctrine of the Trinity. Beyond his work on the mathematical sciences, Newton dedicated much of his time to the study of biblical chronology and alchemy, but most of his work in those areas remained unpublished until long after his death. In his later life, Newton became president of the Royal Society. He also served the British government as Warden and Master of the Royal Mint.

Contents [hide]

1 Life

1.1 Early life

1.2 Middle years

1.2.1 Mathematics

1.2.2 Optics

1.2.3 Mechanics and gravitation

1.3 Classification of cubics and beyond

1.4 Later life

1.5 Personal relations

2 After death

2.1 Fame

2.2 Commemorations

2.3 In popular culture

3 Religious views

3.1 Effect on religious thought

3.2 End of the world

3.3 Alchemy

4 Enlightenment philosophers

5 Royal Mint

6 Laws of motion

7 Apple incident

8 Works

8.1 Primary sources

9 See also

10 References

11 Bibliography

12 Further reading

13 External links

Life

Early life

Main article: Early life of Isaac Newton

Isaac Newton was born (according to the Julian calendar in use in England at the time) on Christmas Day, 25 December 1642 (NS 4 January 1643[1]), at Woolsthorpe Manor in Woolsthorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. He was born three months after the death of his father, a prosperous farmer also named Isaac Newton. Born prematurely, he was a small child; his mother Hannah Ayscough reportedly said that he could have fit inside a quart mug.[9] When Newton was three, his mother remarried and went to live with her new husband, the Reverend Barnabus Smith, leaving her son in the care of his maternal grandmother, Margery Ayscough. The young Isaac disliked his stepfather and maintained some enmity towards his mother for marrying him, as revealed by this entry in a list of sins committed up to the age of 19: "Threatening my father and mother Smith to burn them and the house over them."[10] Newton's mother had three children from her second marriage.[11] Although it was claimed that he was once engaged,[12] Newton never married.

Newton in a 1702 portrait by Godfrey Kneller

Isaac Newton (Bolton, Sarah K. Famous Men of Science. NY: Thomas Y. Crowell & Co., 1889)

From the age of about twelve until he was seventeen, Newton was educated at The King's School, Grantham which taught him Latin but no mathematics. He was removed from school, and by October 1659, he was to be found at Woolsthorpe-by-Colsterworth, where his mother, widowed for a second time, attempted to make a farmer of him. Newton hated farming.[13] Henry Stokes, master at the King's School, persuaded his mother to send him back to school so that he might complete his education. Motivated partly by a desire for revenge against a schoolyard bully, he became the top-ranked student,[14] distinguishing himself mainly by building sundials and models of windmills.[15]

In June 1661, he was admitted to Trinity College, Cambridge, on the recommendation of his uncle Rev William Ayscough. He started as a subsizar—paying his way by performing valet's duties—until he was awarded a scholarship in 1664, which guaranteed him four more years until he would get his M.A.[16] At that time, the college's teachings were based on those of Aristotle, whom Newton supplemented with modern philosophers such as Descartes, and astronomers such as Galileo and Thomas Street, through whom he learned of Kepler's work. He set down in his notebook a series of 'Quaestiones' about mechanical philosophy as he found it. In 1665, he discovered the generalised binomial theorem and began to develop a mathematical theory that later became calculus. Soon after Newton had obtained his B.A. degree in August 1665, the university temporarily closed as a precaution against the Great Plague. Although he had been undistinguished as a Cambridge student,[17] Newton's private studies at his home in Woolsthorpe over the subsequent two years saw the development of his theories on calculus,[18] optics, and the law of gravitation. In April 1667, he returned to Cambridge and in October was elected as a fellow of Trinity.[19][20] Fellows were required to become ordained priests, although this was not enforced in the restoration years and an assertion of conformity to the Church of England was sufficient. However, by 1675 the issue could not be avoided and by then his unconventional views stood in the way.[21] Nevertheless, Newton managed to avoid it by means of a special permission from Charles II (see "Middle years" section below).

His studies had impressed the Lucasian professor, Isaac Barrow, who was more anxious to develop his own religious and administrative potential (he became master of Trinity two years later), and in 1669, Newton succeeded him, only one year after he received his M.A.

Middle years

Mathematics

Newton's work has been said "to distinctly advance every branch of mathematics then studied".[22] His work on the subject usually referred to as fluxions or calculus, seen in a manuscript of October 1666, is now published among Newton's mathematical papers.[23] The author of the manuscript De analysi per aequationes numero terminorum infinitas, sent by Isaac Barrow to John Collins in June 1669, was identified by Barrow in a letter sent to Collins in August of that year as:[24]

Mr Newton, a fellow of our College, and very young ... but of an extraordinary genius and proficiency in these things.

Newton later became involved in a dispute with Leibniz over priority in the development of calculus (the Leibniz–Newton calculus controversy). Most modern historians believe that Newton and Leibniz developed calculus independently, although with very different notations. Occasionally it has been suggested that Newton published almost nothing about it until 1693, and did not give a full account until 1704, while Leibniz began publishing a full account of his methods in 1684. (Leibniz's notation and "differential Method", nowadays recognised as much more convenient notations, were adopted by continental European mathematicians, and after 1820 or so, also by British mathematicians.) Such a suggestion, however, fails to notice the content of calculus which critics of Newton's time and modern times have pointed out in Book 1 of Newton's Principia itself (published 1687) and in its forerunner manuscripts, such as De motu corporum in gyrum ("On the motion of bodies in orbit"), of 1684. The Principia is not written in the language of calculus either as we know it or as Newton's (later) 'dot' notation would write it. His work extensively uses calculus in geometric form based on limiting values of the ratios of vanishing small quantities: in the Principia itself, Newton gave demonstration of this under the name of 'the method of first and last ratios'[25] and explained why he put his expositions in this form,[26] remarking also that 'hereby the same thing is performed as by the method of indivisibles'.

Because of this, the Principia has been called "a book dense with the theory and application of the infinitesimal calculus" in modern times[27] and "lequel est presque tout de ce calcul" ('nearly all of

...

Descargar como (para miembros actualizados) txt (85 Kb)
Leer 52 páginas más »
Disponible sólo en Clubensayos.com