ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Como Se Sintetiza Un Material Elastico

dith986 de Mayo de 2013

4.555 Palabras (19 Páginas)784 Visitas

Página 1 de 19

¿Cómo se sintetiza un materialelástico?

Los materiales elásticos son conocidos como polímeros, y en general han existido en la naturaleza desde siempre y el hombre ha sabido cómo aprovecharlos, Sin embargo, a pesar de que los polímeros pueden ser encontrados en el medio natural, el ser humano ha creado algunos sintéticos; es decir, que se preparan en un laboratorio. Tipos de polímeros: Existen muchos tipos diferentes de materiales poliméricos que no son familiares y que tienen gran número de aplicaciones, entre las que se incluyen plásticos,

elastómeros, fibras, recubrimientos, adhesivos, espumas y películas. Dependiendo de sus propiedades, un polímero pude utilizarse en dos o más de estas aplicaciones. Por ejemplo, un plástico, si se entrecruza y se utiliza por debajo de su temperatura de transición vítrea, puede comportarse satisfactoriamente como un elastómero. Un material fibroso se puede utilizar como plástico si no estatrefilado. Una de las propiedades más fascinantes de los materiales elastoméricos es la elasticidad. Es decir, tienen la posibilidad de experimentar grandes deformaciones y de recuperar elásticamente su forma primitiva. Probablemente este comportamiento se observo por primera vez en los cauchos naturales; sin embargo, en los últimos años se sintetizaron gran número de elastómeros con gran variedad de propiedades.

En ausencia de esfuerzos, los elastómeros son amorfos y están compuestos de cadenas moleculares muy torsionadas, dobladas y plegadas. La deformación elástica causada por la aplicación de un esfuerzo de traccionorigina enderezamiento, desplegado y alargamiento de las cadenas en la dirección del esfuerzo de tracción. Tras eliminar el esfuerzo, las cadenas recuperan la configuración original y las piezas macroscópicas vuelven a tener la forma primitiva. La fuerza impulsora de la deformación elástica es un parámetro termodinámico llamado entropía, que mide el grado de desorden del sistema. La entroia aumenta al aumentar el desorden. Al aplicar un esfuerzo a un elastómero las cadenas se alargan y alinean: el sistema se ordena. A partir de este estado, la entropía aumenta al volver las cadenas a su original enmarañamiento. Este efecto en trópico origina dos fenómenos. En primer lugar, al aplicar un esfuerzo alelastómero, este aumenta su temperatura; en segundo lugar, el modulo de elasticidad aumenta al incrementar la temperatura, comportamiento contrario al de otros materiales

A lo largo de cientos de años se han utilizado polímeros naturales procedentes de plantas y animales. Estos materiales incluyen madera, caucho, lana, cuero y seda. Otros polímeros naturales tales como las proteínas, las enzimas, los almidones y la celulosa tienen importancia en los procesos bioquímicos y fisiológicos de plantas y animales. Desde principios del siglo XX, la moderna investigación científica ha determinad la estructura molecular de este grupo de materiales y ha desarrollado numerosos polímeros, sintetizados a partir de pequeñas moléculas orgánicas. Muchos plásticos, cauchos y materiales fibrosos son polímeros sintéticos. Desde el fin de la segunda guerra mundial, el campo de los materiales se ha visto revolucionado por la llegada de polímeros sintéticos. Las síntesis suelen ser baratas y la propiedades conseguidas comparables, y a veces superiores, a las de los análogos naturales. En algunas aplicaciones, los metales y la madera se sustituyen por polímeros, que tienen propiedades idóneas y se pueden fabricar a bajo costo.

Las propiedades de los polímeros, como en el caso de los metales y de las cerámicas, están relacionadas con la estructura elemental del material.

Características

Las propiedades mecánicas de los polímeros se especifican con los mismos parámetros utilizados para los metales: modulo elástico y resistencia a la tracción, al impacto y a la fatiga. El ensayo esfuerzo-deformación se emplea para caracterizar parámetros mecánicos de muchos materiales poliméricos. La mayoría de las características mecánicas de los polímeros son muy sensibles a la velocidad de deformación, a la temperatura y a la a naturaleza química del medio (presencia de agua, oxigeno, disolventes orgánicos, etc.) en los materiales de alta elasticidad, como las gomas, conviene modificar las técnicas de ensayo o la forma de las probetas utilizadas para los metales.

El modulo de elasticidad, la resistencia a la tracción y la ductilidad (en porcentaje de alargamiento) de los polímeros se denomina como en los metales. Los polímeros son, en muchos aspectos, mecánicamente distintos de los metales. Por ejemplo, el modulo elástico de los polímeros de alta elasticidad es del orden de 7Mpa y el de los de baja elasticidad de 4*103 MPa, mientras que en los metales los valores del modulo elástico son mayores y el intervalo de variación es menor: va de 48*103 410*103 MPa. La resistencia máxima a la tracción de los polímeros es del orden de 100MPa, mientras que la de algunas aleaciones metálicas es de 4100 MPa. La elongación plástica de los metales raramente es superior al 100%, mientras que algunos polímeros de alta elasticidad puede experimentar elongaciones del 1000%.

Las características mecánicas de los polimeros son muchos mas sensibles a las variacions de temperatura, en condiciones ambientales, que las de los metales. Al observar el comportamiento esfuerzo-deformacion del poli(metacrilato de metilo)(Plexiglas) a temperaturas comprendidas entre 4 y 60°C se aprecia que el incremento de temperatura produce (1) disminución del modulo elastico, (2) disminución de la resisitencia a la traccion y (#) aumento de la ductilidad: el polimero es totalmente frágil a 4°C mientras que a 50 y 60 °C experimenta una considerable deformación plastica.

La influencia de la velocidad de deformación puede tambien ser importante en el comportamiento mecanico. Generalmente la dismiucion de la velocidad de deformación tiene el mismo efecto que el aumento de la temperatura en el comportamiento esfuerzo-deformacion, es decir, el material se comporta como mas blando mas dúctil.

El conocimiento de los mecanismos de la deformación contribuye a controlar las caracteristicas mecanicas de estos materiales. En este sentido existen dos modelos de deformación diferentes. Uno de ellos implica la deformación plastica que ocurre en los polimeros semicristalinos. La caracteristica mas importante de estos materiales suele ser la resistencia. Por otro lado, los elastómeros se utilizan por sus excepcionales propiedades de elasticidad.

Polimeros termoplásticos y termoestables.

Una forma de clasificar los polimeros es según su respuesta mecanica frente a temperaturas elevadas. En esta clasificacion existen dos subdivisiones: los polimeros termoplásticos y los polimeros termoestables. Los termoplásticos se ablandan al calentarse (a veces funden) y se endurecen al enfriarse (estos procesos son totalmente reversibles y pueden repetirse). Estos materiales normalmente se fabrican con aplicación simultanea de calor y de presion. A nivel molecular, a medida que la temperatura aumenta, la fuerza de los enlaces secundarios se debilita (por que la movilidad molecular aumenta) y esto facilita el movimiento relativo de las cadenas adyacentes al aplicar un esfuerzo . la degradación irreversible produce cuando la temperatura de un termoplástico fundido se eleva hasta el punto que las vibraciones moleculares son tan violentas que pueden romper los enlaces covalentes. Los termoplásticos son relativamente blandos y dúctiles. La mayoria de los polimeros lineales y los que tienen estructuras ramificadas con cadenas flexibles son termoplásticos.

Los polimeros termoestables se endurecen al calentarse y no se ablandan al continuar calentando. Al iniciar el tratamiento termico se origina entrecruzamientos covalente entre cadenas moleculares contiguas. Estos enlaces dificultan los movimientos de vibracion y de rotacion de las cadenas a elevadas temperaturas. Generalmente el entrecruzamiento es extenso: del 10 al 50% de las unidades monometricas de las cadenas estan entrecruzadas. Solo el calentamiento a temperaturas excesivamente altas causa rotura de estos enlaces entrecruzados y degradacion del polimero. Los polimeros termoestables generalmente son mas duros, resistentes y msa fragiles que los termoplásticos y tienen mejor estabilidad dimensional. La mayoria de los polimero entrecruzados y reticulados, como el caucho vulcanizado, los epoxi y las resinas fenolicas y de poliéster, son termoestables.

Viscoelasticidad

Un polimero amorfo se compoirta como un vidrio a baja temperatura, como un solido gomoelastico a temperaturas intermedias (por encima de la temperatura de transición vitrea) y como un liquido viscoso a temperaturas elevadas. Frente a deforamcaicones relativamente pequeñas, el comportamiento mecanico a bajas temperaturas es elastico y cumple la ley de Hooke. A temperaturas muy elevadas prevalece el comportamiento viscoso o liquido elastico. A temperaturas intermedias aparece un solido, como de goma, que presenta caracteristicas mecanicas intermedias entre estos dos extremos: esta condicion se llama viscoelasticidad.

La deformación elastica es instantanea; esto significa que la deformación total ocurre en el mismo instante que se aplica el esfuerzo (la deformación es independiente del tiempo). Ademas, al dejar de aplicar el esfuerzo la deformación se recupera totalmente: la probeta adquiere las dimensiones originales.

Por el contrario, para el comporatamiento totalmente viscoso, la deformación no es instantanea.

...

Descargar como (para miembros actualizados) txt (31 Kb)
Leer 18 páginas más »
Disponible sólo en Clubensayos.com