ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Concepto De Matriz

rafabuba11 de Abril de 2013

524 Palabras (3 Páginas)489 Visitas

Página 1 de 3

Concepto de matriz

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Cada uno de los números de que consta la matriz se denomina elemento. Un elemento se distingue de otro por la posición que ocupa, es decir, la fila y la columna a la que pertenece.

El número de filas y columnas de una matriz se denomina dimensión de una matriz. Así, una matriz será de dimensión: 2x4, 3x2, 2x5,... Sí la matriz tiene el mismo número de filas que de columna, se dice que es de orden: 2, 3, ...

El conjunto de matrices de m filas y n columnas se denota por Amxn o (aij), y un elemento cualquiera de la misma, que se encuentra en la fila i y en la columna j, por aij.

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas, son iguales.

Matriz fila

Una matriz fila está constituida por una sola fila.

Matriz columna

La matriz columna tiene una sola columna

Matriz rectangular

La matriz rectangular tiene distinto número de filas que de columnas, siendo su dimensión mxn.

Matriz cuadrada

La matriz cuadrada tiene el mismo número de filas que de columnas.

Los elementos de la forma aii constituyen la diagonal principal.

La diagonal secundaria la forman los elementos con i+j = n+1.

Matriz nula

En una matriz nula todos los elementos son ceros.

Matriz triangular superior

En una matriz triangular superior los elementos situados por debajo de la diagonal principal son ceros.

Matriz triangular inferior

En una matriz triangular inferior los elementos situados por encima de la diagonal principal son ceros.

Matriz diagonal

En una matriz diagonal todos los elementos situados por encima y por debajo de la diagonal principal son nulos.

Matriz escalar

Una matriz escalar es una matriz diagonal en la que los elementos de la diagonal principal son iguales.

Matriz identidad o unidad

Una matriz identidad es una matriz diagonal en la que los elementos de la diagonal principal son iguales a 1.

Matriz traspuesta

Dada una matriz A, se llama matriz traspuesta de A a la matriz que se obtiene cambiando ordenadamente las filas por las columnas

(At)t = A

(A + B)t = At + Bt

(α •A)t = α• At

(A • B)t = Bt • At

Matriz regular

Una matriz regular es una matriz cuadrada que tiene inversa.

Matriz singular

Una matriz singular no tiene matriz inversa.

Matriz idempotente

Una matriz, A, es idempotente si:

A2 = A.

Matriz involutiva

Una matriz, A, es involutiva si:

A2 = I.

Matriz simétrica

Una matriz simétrica es una matriz cuadrada que verifica:

A = At.

Matriz antisimétrica o hemisimétrica

Una matriz antisimétrica o hemisimétrica es una matriz cuadrada que verifica:

A = -At.

Matriz ortogonal

Una matriz es ortogonal si verifica que:

A•At = I.

Propiedades de la suma de matrices

Interna:

La suma de dos matrices de orden m x n es otra matriz dimensión m x n.

Asociativa:

A + (B + C) = (A + B) + C

Elemento neutro:

A + 0 = A

Donde O es la matriz nula de la misma dimensión que la matriz A.

Elemento opuesto:

A + (-A) = O

La matriz opuesta es aquella en que todos los elementos están cambiados de signo.

Conmutativa:

A + B = B + A

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com