HIDROCARBUROS
Betsy_2327 de Noviembre de 2014
3.253 Palabras (14 Páginas)226 Visitas
HIDROCARBUROS
La estructura molecular consiste en un armazón de átomos de carbono a los que se unen los átomos de hidrógeno.
Los hidrocarburos son los compuestos básicos de la Química Orgánica. Las cadenas de átomos de carbono pueden ser lineales o ramificadas y abiertas o cerradas.
Los hidrocarburos son compuestos de carbono e hidrógeno que, atendiendo a la naturaleza de los enlaces, pueden clasificarse de la siguiente forma:
¦ Saturados ¦ Alcanos
¦ Alifáticos ¦
¦ ¦ ¦ Alquenos
¦ ¦ Insaturados ¦
Hidrocarburos ¦ ¦ Alquinos
¦
¦ Aromáticos
ALCANOS
El carbono se enlaza mediante orbitales híbridos sp3 formando 4 enlaces simples en disposición tetraédrica.
Nomenclatura
1.- Cadena más larga: metano, etano, propano, butano, pentano,...
2.- Las ramificaciones como radicales: metil(o), etil(o),...
3.- Se numera para obtener los números más bajos en las ramificaciones.
4.- Se escriben los radicales por orden alfabético y con los prefijos di-, tri-, ... si fuese necesario.
5.- Los hidrocarburos cíclicos anteponen el prefijo ciclo-
Propiedades físicas
Las temperaturas de fusión y ebullición aumentan con el número de carbonos y son mayores para los compuestos lineales pues pueden compactarse más aumentando las fuerzas intermoleculares.
Son menos densos que el agua y solubles en disolventes apolares.
Propiedades químicas
Son bastantes inertes debido a la elevada estabilidad de los enlaces C-C y C-H y a su baja polaridad. No se ven afectados por ácidos o bases fuertes ni por oxidantes como el permanganato. Sin embargo la combustión es muy exotérmica aunque tiene una elevada energía de activación.
Las reacciones más características de los alcanos son las de sustitución:
CH4 + Cl2 ----> CH3Cl + HCl
También son importantes las reacciones de isomerización:
AlCl3
CH3CH2CH2CH3 ------> CH3CH (CH3)2
Obtención de alcanos
La fuente más importante es el petróleo y el uso principal la obtención de energía mediante combustión.
Algunas reacciones de síntesis a pequeña escala son:
- Hidrogenación de alcanos:
Ni
CH3CH=CHCH3 -----> CH3CH2CH2CH3
- Reducción de haluros de alquilo: Zn
2 CH3CH2CHCH3 ------> 2 CH3CH2CH2CH3 + ZnBr2
ALQUENOS
Los alquenos contienen enlaces dobles C=C. El carbono del doble enlace tiene una hibridación sp2 y estructura trigonal plana. El doble enlace consta de un enlace sigma y otra pi. El enlace doble es una zona de mayor reactividad respecto a los alcanos. Los dobles enlaces son más estables cuanto más sustituidos y la sustitución en trans es más estable que la cis.
Nomenclatura
1.- Seleccionar la cadena principal: mayor número de dobles enlaces y más larga. Sufijo -eno.
2.- Numerar para obtener números menores en los dobles enlaces.
Propiedades físicas
Las temperaturas de fusión son inferiores a las de los alcanos con igual número de carbonos puesto que, la rigidez del doble enlace impide un empaquetamiento compacto.
Propiedades químicas
Las reacciones más características de los alquenos son las de adición:
CH3-CH=CH-CH3 + XY ------> CH3-CHX-CHY-CH3
Entre ellas destacan la hidrogenación, la halogenación, la hidrohalogenación y la hidratación. En estas dos últimas se sigue la regla de Markovnikov y se forman los derivados más sustituidos, debido a que el mecanismo transcurre mediante carbocationes y se forma el carbocatión más estable que es el más sustituido.
Otra reacción importante es la oxidación con MnO4- o OsO4 que en frío da lugar a un diol y en caliente a la ruptura del doble enlace y a la formación de dos ácidos.
Otra característica química importante son las reacciones de polimerización. Mediante ellas se puede obtener una gran variedad de plásticos como el polietileno, el poli estireno, el teflón, el plexiglás, etc. La polimerización de dobles enlaces tiene lugar mediante un mecanismo de radicales libres.
Obtención de alquenos
Se basa en reacciones de eliminación, inversas a las de adición:
CH3-CHX-CHY-CH3 ------> CH3CH=CHCH3 + XY
Entre ellas destacan la deshidrogenación, la deshalogenación, la deshidrohalogenación y la deshidratación. Las deshidratación es un ejemplo interesante, el mecanismo transcurre a través de un carbocatión y esto hace que la reactividad de los alcoholes sea mayor cuanto más sustituidos. En algunos casos se producen re arreglos de carbonos para obtener el carbocatión más sustituido que es más estable. De igual modo el alqueno que se produce es el más sustituido pues es el más estable. Esto provoca en algunos casos la migración de un protón.
ALQUINOS
Se caracterizan por tener enlaces triples. El carbono del enlace triple se enlaza mediante una hibridación sp que da lugar a dos enlaces simples sigma formando 180 grados y dos enlaces pi. El deslocalización de la carga en el triple enlace produce que los hidrógenos unidos a el tengan un carácter ácido y puedan dar lugar a alquiluros. El alquino más característico es el acetileno HCCH, arde con una llama muy caliente ( 2800 oC) debido a que produce menos agua que absorbe menos calor.
Sus propiedades físicas y químicas son similares a las de los alquenos. Las reacciones más características son las de adición.
Nomenclatura
1.- Se consideran como dobles enlaces al elegir la cadena principal.
2.- Se numera dando preferencia a los dobles enlaces.
Hidrocarburos alicíclicos, o simplemente cíclicos, compuestos por átomos de carbono encadenados formando uno o varios anillos.
Como ejemplos:
ciclo butano
ciclo pentano
biciclo [4,4,0] decano
3. Hidrocarburos aromáticos, que constituyen un grupo especial de compuestos cíclicos que contienen en general anillos de seis eslabones en los cuales alternan enlaces sencillos y dobles. Se clasifican, independientemente de los hidrocarburos alifáticos y alicíclicos, por sus propiedades físicas y químicas muy características.
Como ejemplos tenemos:
benceno
naftaleno
fenantreno
MÉTODOS DE OBTENCIÓN DE HIDROCARBUROS EN LAS INDUSTRIAS (PETROLEO)
El petróleo, al igual que el gas natural que le acompaña en las bolsas (cuando las cantidades de los compuestos gaseosos del petróleo son mayores, el yacimiento de petróleo está asociado con un depósito de gas natural), es una fuente importante de múltiples productos orgánicos. Proporciona el combustible para los diversos tipos de motores de explosión y es materia prima para la obtención de casi el 90% de los compuestos orgánicos. El petróleo crudo carece de utilidad comercial, pero se pueden separar de él una serie de productos útiles por destilación, mediante la cual se obtiene una serie de fracciones que posteriormente son la base de la industria petroquímica.
De esta manera, los componentes del petróleo, mediante destilación fraccionada*, refinación* y craqueo*, proporcionan un amplio abanico de compuestos utilizados como:
Materias primas en la industria química.
Materias primas en la industria textil y de plásticos (nylon, telas impermeables..).
Combustibles industriales y domésticos.
Combustibles de automoción (gasolina…)
Combustibles en centrales eléctricas para producir electricidad.
En los procesos descritos se liberan contaminantes, que deben ser evitados al máximo, y regulados por una normativa adecuada.
Destilación: nos permite separar y analizar las diferentes fracciones del petróleo. Su estudio completo se realiza en unidades o plantas piloto, en donde se reproducen a pequeña escala todas las operaciones, que son de tres clases:
Separación de las mezclas compuestas de hidrocarburos.
Depuración de los elementos indeseables.
Síntesis (fabricación) de sustancias o nuevos compuestos, por lo que se distinguen dos tipos fundamentales de refinerías:
a) las que se limitan a fabricar los productos más corrientes: carburantes y combustibles.
b) las que elaboran, además, aceites lubricantes, parafinas y betunes.
Destilación fraccionada: Se lleva a cabo con:
Horno tubular, en el que el producto se vaporiza parcialmente aplicando altas temperaturas.
Torre de fraccionamiento o columna de platillos, en la que se efectúa la separación de los productos de la siguiente forma: los vapores más ligeros salen en primer lugar (propano, butano, y en general los
...